
Optimization of Sparse
Generalized Jacobian Chain
Products

CES-Master Seminar, SS 2020, RWTH Aachen University
Computational Engineering Science M.Sc.

tamme claus
RWTH Aachen University
Mat.Nr: 346980
tamme.claus@rwth-aachen.de

supervised by

uwe naumann
Software and Tools for Computational Engineering (STCE)
RWTH Aachen University
naumann@stce.rwth-aachen.de

Attachements
• presentation: TammeClaus_OptimizationOfSparseGeneralizedJacobianChainProducts_Presentation.pdf
• source code: GSJCPB/

– solver: gsjcpb_solve.cpp
– problem generator: gsjcpb_generate.cpp
– example problems: problem_example, problem_suitesparse, problems*/*
– example solutions: solutions*/*

OPTIMIZATION OF SPARSE GENERALIZED JACOBIAN CHAIN
PRODUCTS∗

TAMME CLAUS†

Abstract. With growing application of algorithms from algorithmic/computational differentia-
tion (AD) in various fields of computational engineering and science the need of its efficient application
is evident. While being conceptually easy to understand, the efficient implementation of the AD meth-
ods is an open research question. In this work the optimization of sparse generalized jacobian chain
products is considered as one approach to optimize the number of necessary fused multiply-add
operations prior to evaluating the derivative using the AD modes adjoint and tangent. The result of
this optimization can be considered as a mission plan for the subsequently executed AD-tool. The
origin of the problem will be unveiled by briefly explaining the concepts of AD, then individual costs
arising in the problem will be analyzed. Afterwards the optimization of the problem is implemented
using a dynamic programming approach. A case study, based on the described optimization finally
shows the need for AD mission planning by illustrating the unveiled reductions in the number of
fused multiply add operations.

Key words. sparse generalized jacobian chain product, algorithmic differentiation, computational
differentiation, ad mission planning, adjoint mode, tangent mode, dynamic programming, sparse matrix
product, jacobian compression

AMS subject classifications. 65-04, 65D25, 90C27, 90C39

1. Introduction. The discovery of the derivative back in the 1600s represents
such a fundamental building block in the development of calculus, that even today there
is controversy about who actually discovered it first.[13, 15] As the local rate of change
of a (continuous, locally differentiable) function y = F (x) : Rn → Rm, the derivative is
nowadays build upon in most areas of mathematics, physics and engineering. Instead of
simple mathematical expressions which can be differentiated by hand, F (x) often hides
the evaluation of an (arbitrarily) complex computer simulation or the application of
iterative algorithms. Irrespective of whether only simple sensitivities, the application
of numerical optimization methods or stochastic analysis are required, the need to
calculate derivatives F ′(x) of functions F (x) often arises.

Algorithmic/automatic differentiation (AD) provides tools for embedding the
calculation of arbitrarily high, exact derivatives into existing program code, with
little to no changes to the original code.[5, 10] While the two fundamental modes of
AD, tangent and adjoint (see subsection 2.1) are conceptually easy to understand,
their efficient application is challenging. Here, we measure efficiency in terms of fused
multiply-add (fma) operations, since multiplication followed by an addition commonly
occurs in tangent and adjoint AD and many general-purpose processors are equipped
to execute the fma operation in one clock cycle.[4]

The accumulation of a jacobian, the matrix of all derivatives of a vector-valued
function F , can be represented by the transformation of a labeled directed acyclic
graph (DAG), with vertices for all intermediate elemental operations and edges labeled
with respective partial derivatives, to a bipartite graph. The bipartite graph then holds
edges from input variables to output variables labeled with the corresponding jacobian
entries. The optimal accumulation of jacobians is shown to be a NP-complete problem
in [9], including elimination techniques like vertex, edge or face elimination.[8] Therefore

∗CES-Master Seminar, SS 2020
†RWTH Aachen University (Mat.Nr: 346980, tamme.claus@rwth.aachen.de). Supervised by Uwe

Naumann, STCE, RWTH Aachen University (naumann@stce.rwth-aachen.de).

1

mailto:tamme.claus@rwth.aachen.de
mailto:naumann@stce.rwth-aachen.de

2 TAMME CLAUS

bear in mind that a calculation of the optimal accumulation is only effective if the
time spent on finding the optimum + optimal accumulation < naive accumulation.

While an elimination approach may unveil a small number of required operations
to accumulate the jacobian it might be inapplicable in practice, because the DAG
can grow to unmanageable sizes. Furthermore the evaluation time of algorithms on
modern computers, is not only determined by the fmas but also influenced by temporal
and spatial data locality.[4] This motivates the approach to optimize on a higher level
of granularity, as is done here in contrast to the graph elimination techniques in [8].
Obviously a higher granularity limits the fma reduction possibilities, but facilitates
the solving of the optimization problem while still yielding significant fma reductions
compared to a naive accumulation.

Consider a partitioning of F in

(1.1) F = Fq ◦ Fq−1 ◦ . . . ◦ F1,

with compliant zi = Fi(zi−1) : Rni → Rmi , mi = ni+1, n1 = n and mq = m,
analogously z0 = x and zq = y. A possible partitioning could be given by the individual
functions of a computer program, however the individual factors Fi are purposefully let
arbitrary here. By the multivariate chain rule, the jacobian F ′ ∈ Rm×n is decomposed
into the jacobian chain product

(1.2) F ′ = F ′q · F ′q−1 · . . . · F ′1,

with local jacobians F ′i (zi−1) ∈ Rmi×ni . To calculate such a chained jacobian product,
AD tools offer the opportunity to propagate tangents or adjoints through the individual
factors Fi. This leaves us with the options to preaccumulate individual F ′i (using
tangent or adjoint) followed by matrix-multiplication or the direct propagation of
tangents and adjoints.

This work extends the optimization of generalized jacobian chain products as-
suming dense local factors F ′i given in [12] to sparse local factors. The dynamic
programming approach to solve the optimization problem from [12] is extended to
sparse local jacobians. Sparsity patterns of all local factors are assumed to be given,
but can for a given implementation be determined automatically.[3, 6] Without further
information about the factors Fi, their sparsity patterns allow a more efficient imple-
mentation of the matrix-matrix product and the application of jacobian compression
techniques for less costly accumulation using AD. Dynamic programming has already
been successfully applied to similar problems in the efficient application of AD [7] and
in the field of sparse-linear algebra [11].

2. Costs.
2.1. Costs of AD modes - tangent and adjoint. Both modes of AD, tangent

and adjoint, are fundamentally based on the chain rule. Each local factor zi = Fi(zi−1)
can be split up in multiple single assignments ϕ

(i)
j representing the elemental arithmetic

operations {+,−, sin, . . .}. Then the chain rule allows us to write the derivative of
Fi as multiplication of the derivatives of the elemental operations with respect of
their direct dependents, which are assumed to be available. Let us formally write the
function Fi as the sequence of assignments

(v(i)
1 , . . . , v(i)

ni
)T = zi−1(2.1a)

v
(i)
j = ϕ

(i)
j ((v(i)

l)l≺j)(2.1b)

zi = (v(i)
|Vi|−mi

, . . . v
(i)
|Vi|)

T ,(2.1c)

OPTIMIZATION OF SPARSE GENERALIZED JACOBIAN CHAIN PRODUCTS 3

where v(i) are intermediate variables and |Vi| is the necessary number of single assign-
ments. Then the two AD-modes basically calculate

(2.2a) v̇
(i)
j =

∑
k≺j

∂ϕ
(i)
j

∂v
(i)
k

v̇
(i)
k (2.2b) v̄

(i)
k =

∑
j�k

∂ϕ
(i)
j

∂v
(i)
k

v̄
(i)
j ,

with corresponding initialization of tangents v̇(i) from żi−1 and adjoints v̄(i) from
z̄i. Note the reversed dependencies of tangent and adjoint accumulations. While for
the tangent v̇

(i)
j all preceding, k ≺ j, tangents v̇

(i)
k and respective derivatives of the

elemental operation ϕ
(i)
j are considered, for the adjoint v̄

(i)
k we consider all succeeding,

j � k, adjoints v̄
(i)
j with respective derivatives.

Both modes can be visualized using the DAG Gi = (Vi, Ei) of Fi with vertices
Vi representing the intermediate variables v(i). Simultaneously the edges Ei represent
direct dependencies between v(i) through ϕ(i) and are labeled with the corresponding
partial derivatives. An edge directed from v

(i)
k into v

(i)
j visualizes direct dependence

of j from k. Then for the tangent mode we sum over all incoming edges, while for the
adjoint mode we use all outgoing edges.

To accumulate the jacobian F ′i the crucial difference between both modes is, that
for the tangent mode one has to initialize/seed input tangents żi−1 while for the
adjoint mode one seeds the outputs z̄i. We denote the simultaneous propagation of
multiple tangents, known as vector tangent mode with Żi = Ḟi · Żi−1. Similarly the
simultaneous propagation of multiple adjoints, vector adjoint mode with Z̄i−1 = Z̄i · F̄i.

costs to accumulate jacobians. To populate all intermediate variables and their
partial derivatives one forward pass of F is always necessary, its costs can therefore
be neglected in the optimization, as done in [12]. Furthermore we assume sufficient
memory availability to record all intermediate variables and partial derivatives. While
tangents can be computed alongside the forward pass, adjoints require their storage
(or recomputation, see checkpointing [10]).

A naive accumulation of the jacobian F ′i using vector tangent mode can be achieved
by seeding the identity matrix Ini ∈ Rni×ni . Each tangent in Ini is propagated through
the DAG Gi, yielding one fma operation per edge. Consequentially the cost for naive
vector tangent mode is |Ei|·ni. Given the sparsity pattern of F ′i structurally orthogonal
columns can be identified and their jacobian entries can be evaluated simultaneously.
Given there are ti ≤ ni groups of structurally orthogonal columns, this results in
a compressed seeding matrix Ti ∈ Rni×ti and the cost of accumulating the whole
jacobian is given by |Ei| · ti.

Using a similar argumentation, the cost for naive vector adjoint mode, by seeding
the identity Imi

∈ Rmi×mi , is |Ei| ·mi. Analogously, using jacobian compression with
ai ≤ mi groups of structurally orthogonal rows, by seeding Ai ∈ Rai×mi as adjoints,
the cost is |Ei| · ai.

Determination of structurally orthogonal groups can be implemented using graph
coloring methods. We refer to [2], where the compression used later in this work is
covered as direct, unidirectional. More sophisticated compression, e.g. bidirectional or
substitution methods are not considered here. Note that we neglect the cost of the
subsequent unpacking of the jacobian, as for direct compression methods the unpacking
is reordering of entries. Also we did not exploit internal structure of Fi, being aware
of the fact that special structures of the DAG could reduce the number of necessary
fmas even further.

4 TAMME CLAUS

2.2. Cost of sparse matrix multiplication. While jacobian compression offers
one way of saving fmas, the sparse matrix-matrix product offers another. Consider
the multiplication of two sparse matrices with sparsity patterns A ∈ {0, 1}m2×n2 and
B ∈ {0, 1}m1×n1 with n2 = m1. Assuming an implementation that exploits sparsity,
the cost to multiply the two matrices is

(2.3) fma =
m2∑
i=1

n1∑
j=1

n2∑
k=1

AikBkj ≤ m2n1n2.

This reduces to counting the non-zero entries of both matrices which have to be
multiplied. For dense matrices the cost is m2n1n2.

The computation of the sparsity pattern C ∈ {0, 1}m2×n1 of the product will be
used later, we formally state it here as

(2.4) Cij =
{

1
∑m1
k=1 AikBkj > 0

0 else
i = 1 . . . n2, j = 1 . . . m1.

For notes on the efficient implementation of sparsity pattern multiplication and the
respective cost of matrix multiplication we refer to section 4.

2.3. Cost of recompression. When using jacobian compression, the recom-
pression of preaccumulated jacobians may be necessary. Consider the calculation of
F ′2,1 = F ′2 · F ′1 ∈ Rm2×n1 using tangent mode, where a compressed seed T2,1 ∈ Rn1×t1

(compatible with the sparsity pattern of F ′2,1) and the jacobian F ′1 ∈ Rm1×n1 are given.

(2.5) Ḟ2,1 · (F ′1 · T2,1)

The seed T2,1 can correspond to a seed T1 (compatible with the sparsity pattern of F ′1),
resulting in a free recompression, but in general, additions may be necessary. As cost
of the recompression we assign one fma per addition occurring in the matrix-matrix
product F ′1 · T2,1. Then the cost is given by

(2.6) fma =
m1∑
i=1

t∑
j=0

max{0,

n1∑
k=0

(S1)ik(T2,1)kj − 1},

where S1 ∈ {0, 1}m1×n1 is the sparsity pattern of F ′1. The cost for adjoint recompression
can be defined analogous. For the implementation of recompression costs we refer to
section 4.

3. Generalized sparse jacobian chain product - dynamic programming.
Having identified the two additional fma reductions of sparse jacobian chain products
compared to dense products, the problem can be defined as follows.

problem statement. For the jacobian chain F ′ = Fq · . . . · F1 assume that tangent
Ḟi · Żi−1 and adjoint Z̄i · F̄i implementations of the individual factors together with
sparsity patterns Si ∈ {0, 1}mi×ni are given. What is the optimal way (minimum
number of fma) to accumulate F ′?

This problem can, like the dense problem, be solved using dynamic programming.
For the dense problem the formal proof is given in [12]. As the proof for the sparse
problem would follow an almost identical path, it is omitted here and we will extend
on the proof in [12] with regards to sparsity.

OPTIMIZATION OF SPARSE GENERALIZED JACOBIAN CHAIN PRODUCTS 5

Consider some subchain F ′j,i ∈ Rmj×ni of the jacobian chain F ′ = F ′q · . . . F ′1 split
at position k with q ≥ j ≥ k + 1 > k ≥ i ≥ 1

(3.1) F ′j,i = F ′j · . . . · F ′k+1︸ ︷︷ ︸
F ′

j,k+1

·F ′k · . . . · F ′i︸ ︷︷ ︸
F ′

k,i

and sparsity pattern of the subchain Sj,i with all possible row and column compressions
T

(s)
j,i ∈ Rni×t(s)

j,i , s ∈ Stj,i and A
(s)
j,i ∈ Ra

(s)
j,i
×mi , s ∈ Saj,i. Assume that all jacobians of

length < j − i are given. The options to accumulate F ′j,i are

F ′j,k+1 · F ′k,i(3.2a)

Ḟj,i · T (s)
j,i or Ḟj,k+1 · (F ′k,i · T

(s)
j,i)(3.2b)

A
(s)
j,i · F̄j,i or (A(s)

j,i · F
′
j,k+1) · F̄k,i.(3.2c)

Equation (3.2a) uses the previously accumulated jacobians of the left F ′j,k+1 and right
F ′k,i subchain and uses matrix multiplication to calculate F ′i,j . The cost for this option
is obtained from the cost to accumulate the jacobians of the two subchains fmaj,k+1
and fmak,i plus the cost of the matrix multiplication fmaj,k,i (see subsection 2.2).

In equation (3.2b) we use tangent vector mode to propagate the compressed
seed T

(s)
j,i (homogeneous tangent) or F ′k,i · T

(s)
j,i through the whole (homogeneous)

or the remaining left part of the subchain. The costs are given by
∑j
ν=i |Eν | · t(s)

j,i

(homogeneous) or the cost to accumulate the left subchain fmak,i with its recompression
fma(s)

j,k,i (see subsection 2.3) plus the cost of tangent propagation
∑j
ν=k+1 |Eν | · t(s)

j,i .
In equation (3.2c) we use adjoint vector mode to propagate the compressed seed

A
(s)
j,i (homogeneous adjoint) or A

(s)
j,i · F ′j,k+1 through the whole (homogeneous) or re-

maining right part of the subchain. Analogously the costs are:
∑j
ν=i |Eν | · a(s)

j,i (homo-
geneous) or the cost to accumulate the right subchain fmaj,k+1 with its recompression
fma(s)

j,k+1,i plus the cost of adjoint propagation
∑k
ν=i |Eν | · a(s)

j,i .
dynamic programming recurrence. A solution of the dense generalized jacobian

chain product bracketing problem can be computed using the following dynamic
programming recurrence:

(3.3)

fmaj,i =

|Ej | · min{ min
s∈Sa

j,j

{a(s)
j }, min

s∈St
j,j

{t(s)
j }}

(I) i = j

min

min{ min
s∈Sa

j,i

{a(s)
j,i }, min

s∈St
j,i

{t(s)
j,i }}

k∑
ν=i
|Eν |, (II)

min
i≤k<j

min

fmaj,k+1 + fmak,i + fmaj,k,i, (III)

fmaj,k+1 + min
s∈Sa

j,i

{fma(s)
j,k+1,i + a

(s)
j,i

k∑
ν=i
|Eν |}, (IV)

fmak,i + min
s∈St

j,i

{fma(s)
j,k,i + t

(s)
j,i

j∑
ν=k+1

|Eν |} (V)

j > i

As seen in [12] the proof is provided by induction over j − i, starting with the
base cases j = i and j = i + 1. Search space for the product of two sparse jacobians
F ′i+1 · F ′i :

1. Homogeneous tangent Ḟi+1 · (Ḟi · T (s)
i+1,i) [covered by (II)]

6 TAMME CLAUS

2. Preaccumulation of F ′i using tangent mode Ḟi · T (r)
i and subsequent tangent

propagation Ḟi+1 · (F ′i · T
(s)
i+1,i) [covered by (I) and (V)]

3. Preaccumulation of F ′i using adjoint mode A
(r)
i · F̄i and subsequent tangent

propagation Ḟi+1 · (F ′i · T
(s)
i+1,i) [covered by (I) and (V)]

4. Homogeneous adjoint (A(s)
i+1,i · F̄i+1) · F̄i [covered by (II)]

5. Preaccumulation of F ′i+1 using tangent mode Ḟi+1·T (r)
i+1 and subsequent adjoint

propagation (A(s)
i+1,i · F ′i+1) · F̄i [covered by (I) and (IV)]

6. Preaccumulation of F ′i+1 using adjoint mode A
(r)
i+1·F̄i+1 and subsequent adjoint

propagation (A(s)
i+1,i · F ′i+1) · F̄i [covered by (I) and (IV)]

7. Preaccumulation of F ′i using tangent mode Ḟi · T (s)
i and preaccumulation of

F ′i+1 using tangent mode Ḟi+1 · T (s)
i+1 and subsequent matrix multiplication

[covered by (I) and (III)]
8. Preaccumulation of F ′i using tangent mode Ḟi · T (s)

i and preaccumulation of
F ′i+1 using adjoint mode A

(s)
i+1 · F̄i+1 and subsequent matrix multiplication

[covered by (I) and (III)]
9. Preaccumulation of F ′i using adjoint mode A

(s)
i · F̄i and preaccumulation of

F ′i+1 using tangent mode Ḟi+1 · T (s)
i+1 and subsequent matrix multiplication

[covered by (I) and (III)]
10. Preaccumulation of F ′i using adjoint mode A

(s)
i · F̄i and preaccumulation of

F ′i+1 using adjoint mode A
(s)
i+1 · F̄i+1 and subsequent matrix multiplication

[covered by (I) and (III)]
In contrast to [12], where case 1 could also be interpreted as case 2, here we have

to separate them because of the potentially different seed compressions T
(s)
i+1,i and

T
(r)
i , which can yield different costs. Analogous for cases 4 and 6.

Furthermore, the superiority of the homogeneous preaccumulation cases 7, 8, 9
and 10 cannot be shown without knowledge of sparsity pattern and compressions.
However, they are all covered by equation [I] and equation [III].

To complete the proof [12] shows 1 ≤ l =⇒ l + 1 by proving the two proper-
ties: overlapping subproblems and optimal substructure. For the sparse problem both
properties can be shown analogously.

3.1. Restricting the degrees of freedom. Allowing sparsity and especially
the use of unidirectional jacobian compression techniques introduces a another level
of complexity (compared to [12]) to the problem. For each factor, the sparsity pattern
together with its compression matrices have to be computed, which extends the runtime
of optimization in comparison to the dense problem. However, in the real world the
rigorously fastest accumulation (minimum fmas) of the jacobian is not necessary,
therefore further restrictions of the degrees of freedom in favor of the runtime are to
be considered.

Instead of all possible jacobian compressions T
(s)
j,i or A

(s)
j,i it might be enough to

consider only one, e.g the one which needs the fewest number of function evaluations
(where t

(s)
j,i or a

(s)
j,i are minimal) or the one unveiled by a heuristic. In the dynamic

programming recurrence (3.3) the search for the mins is skipped and replaced with
only one, e.g. s∗j,i = arg mins t

(s)
j,i .

Further, one can also completely neglect jacobian compressions and only consider
the fma reductions caused by the sparse matrix multiplication. Then the specific

OPTIMIZATION OF SPARSE GENERALIZED JACOBIAN CHAIN PRODUCTS 7

consideration of homogeneous tangent and adjoint (equation (II)) in the dynamic
programming recurrence (3.3) is not required and the recurrence reduces to the one
given in [12] with the distinction in matrix-multiplication costs. In section 4 a case
study with these both restrictions is carried out.

3.2. Example. An exemplary optimization is shown in Figure 1. It considers the
fma minimization of accumulating the jacobian F ′5,1 ∈ R4×3 of the function F5◦ . . .◦F1
with different propagation costs |Ei| and sparsity patterns. Unidirectional compression
is considered, but as proposed in subsection 3.1 we restrict the search space to only
one compression for tangent and adjoint. The coloring is represented in the Figure 1
by letters a − d alongside the sparsity patterns. For each of the subchains the costs
of all accumulation possibilities are notated, the optimal branches are underlined
and the optimal accumulation cost is tabulated. With arrows the use of (smaller)
preaccumulated subchains in the optimal accumulation is illustrated.

The optimal accumulation has a cost of fma5,1 = 204 and is given by:
• compressed preaccumulation of F ′1 using adjoint mode (cost 5fma)
• compressed preaccumulation of F ′2 using tangent mode (cost 15fma)
• preaccumulation of F ′5,2 using tangent mode Ḟ5 · Ḟ4 · Ḟ3 · F ′2 (cost 172fma)
• dense matrix multiplication to calculate F ′5,1 = F ′5,2 · F ′1 (cost 12fma)

For comparison, the cost of naive homogeneous adjoint is 424fma, the cost of naive
homogeneous tangent is 318fma and the cost of homogeneous preaccumulation (of
all factors followed by an optimal matrix product bracketing) is 328fma, which is a
complexity improvement of 40% to 50%. This example is also attached to the work in
file form and can be found in problem_example.

Without consideration of jacobian compression, the costs of preaccumulation of
F ′1 and F ′2 would increase to 10fma and 30fma, which also changes the further optimal
accumulations. Then the optimal accumulation has a cost of fma5,1 = 222 and is given
by:

• preaccumulation of F ′5,2 using tangent mode (cost 202fma)
• adjoint propagation to calculate the jacobian F ′5,1 = F ′5,2 · F̄1 (cost 20fma)

Restricting the problem further to only dense local factors does not worsen the opti-
mum, because no matrix-multiplication is used in the optimal accumulation. Hence
the accumulation of the jacobian for this problem assuming dense factors also yields
a cost of 222fma.

4. Implementation and Case Study. The implementation of the optimiza-
tion extends the implementation seen in [12]. The dynamic programming routine is
extended to trace sparsity patterns of each subchain. A sparsity pattern is stored as
std::vector<boost::dynamic_bitset<>>, allowing a fast[14] and convenient imple-
mentation of the multiplication, cost and compression routines. Each sparsity pattern
is stored twice, with row-major and column-major ordering, enabling a efficient sparsity
pattern multiplication. The storage requirement of one sparsity pattern then is∼ 2bits
per matrix element, since each one is stored twice. The boost::dynamic_bitset<>
class offers fast element-wise bit operations (AND and OR) as well as .count() which
counts the number of 1 bits. Both are exploited to calculate multiplication and com-
pression costs. In contrast to std::bitset<> the boost implementation is dynamic in
size, which is advantageous in this application, since the size of each factor is problem
dependent.

The algorithms to calculate row and column compressions follow the naive natural
ordering heuristic. Starting with the first row/column all other ones are analyzed in
ascending order, structurally orthogonal ones are identified and labeled with the same

8 TAMME CLAUS

0
1

0
a

1
0

1
a

1
1

1
b

0
1

0
c

a
b

c

F
′5
∈
R

4×
3
|E

5 |=
12

1
1

1
a

1
0

1
b

1
1

0
c

a
b

c

F
′4
∈
R

3×
3
|E

4 |=
46

1
1

1
1

0
a

1
1

0
1

0
b

1
0

1
0

1
c

a
b

c
d

b

F
′3
∈
R

3×
5
|E

3 |=
28

0
1

a

1
0

a

1
0

b

0
1

b

1
0

c

a
a

F
′2
∈
R

5×
2
|E

2 |=
15

1
0

1
a

0
1

0
a

a
a

b

F
′1
∈
R

2×
3
|E

1 |=
5

1
0

1
a

1
1

1
b

1
1

1
c

1
0

1
d

a
b

c

F
′5
,4
∈
R

4×
3

1
1

1
1

1
a

1
1

1
1

1
b

1
1

1
1

0
c

a
b

c
d

e

F
′4
,3
∈
R

3×
5

|1|

F
′3
,2
∈
R

3×
2

0
1

0
a

1
0

1
a

1
0

1
b

0
1

0
b

1
0

1
c

a
a

b

F
′2
,1
∈
R

5×
3

|1|

F
′5
,3
∈
R

4×
5

|1|

F
′4
,2
∈
R

3×
2

|1|

F
′3
,1
∈
R

3×
3

|1|

F
′5
,2
∈
R

4×
2

|1|

F
′4
,1
∈
R

3×
3

|1|

F
′5
,1
∈
R

4×
3

fma
5

=
|E

5 |m
in{3,3}

=
36

fma
4

=
|E

4 |m
in{3

,3}
=

138
fma

3
=
|E

3 |m
in{3,4}

=
84

fma
2

=
|E

2 |m
in{3,1}

=
15

fma
1

=
|E

1 |m
in{1,2}

=
5

fma
5
,4

=
m

in
(|E

5 |+
|E

4 |)m
in{4,3}

fma
5 +

fma
4 +

16
fma

5 +
0

+
|E

4 |4
fma

4 +
0

+
|E

5 |3
=

174
fma

4
,3

=
m

in
(|E

4 |+
|E

3 |)m
in{3,5}

fma
4 +

fma
3 +

24
fma

4 +
0

+
|E

3 |3
fma

3 +
0

+
|E

4 |5
=

222
fma

3
,2

=
m

in
(|E

3 |+
|E

2 |)m
in{3

,2}
fma

3 +
fma

2 +
10

fma
3 +

0
+
|E

2 |3
fma

2 +
0

+
|E

3 |2
=

71

fma
2
,1

=
m

in
(|E

2 |+
|E

1 |)m
in{3

,2}
fma

2 +
fma

1 +
8

fma
2 +

0
+
|E

1 |3
fma

1 +
0

+
|E

2 |2
=

28

fma
5
,3

=
(|E

5 |+
|E

4 |+
|E

3 |)m
in{4,5}

m
in{fma

5
,4 +

fma
3 +

34
,fma

5 +
fma

4
,3 +

33}
m

in{fma
5 +

0
+

(|E
4 |+
|E

3 |)4
,fma

5
,4 +

0
+
|E

3 |4}
m

in{fma
3 +

0
+

(|E
5 |+
|E

4 |)5
,fma

4
,3 +

0
+
|E

5 |5 }
=

282
fma

4
,2

=
(|E

4 |+
|E

3 |+
|E

2 |)m
in{3,2}

m
in{fma

4
,3 +

fma
2 +

14
,fma

4 +
fma

3
,2 +

14}
m

in{fma
4 +

0
+

(|E
3 |+
|E

2 |)3,fma
4
,3 +

0
+
|E

2 |3}
m

in{fma
2 +

0
+

(|E
4 |+
|E

3 |)2 ,fma
3
,2 +

0
+
|E

4 |2}
=

163
fma

3
,1

=
(|E

3 |+
|E

2 |+
|E

1 |)m
in{3,3}

m
in{fma

3
,2 +

fma
1 +

9
,fma

3 +
fma

2
,1 +

15}
m

in{fma
3 +

0
+

(|E
2 |+
|E

1 |)3
,fma

3
,2 +

0
+
|E

1 |3}
m

in{fma
1 +

0
+

(|E
3 |+
|E

2 |)3
,fma

2
,1 +

0
+
|E

3 |3}
=

85

fma
5
,2

=
(|E

5 |+
|E

4 |+
|E

3 |+
|E

2 |)m
in{4

,2}
m

in{fma
5
,3 +

fma
2 +

20
,fma

5
,4 +

fma
3
,2 +

20
,fma

5 +
fma

4
,2 +

14}
m

in{fma
5 +

0
+

(|E
4 |+
|E

3 |+
|E

2 |)4,fma
5
,4 +

0
+

(|E
3 |+
|E

2 |)4
,fma

5
,3 +

0
+
|E

2 |4}
m

in{fma
2 +

0
+

(|E
5 |+
|E

4 |+
|E

3 |)2,fma
3
,2 +

0
+

(|E
5 |+
|E

4 |)2
,fma

4
,2 +

0
+
|E

5 |2}
=

187
fma

4
,1

=
(|E

4 |+
|E

3 |+
|E

2 |+
|E

1 |)m
in{3,3}

m
in{fma

4
,2 +

fma
1 +

9
,fma

4
,3 +

fma
2
,1 +

22
,fma

4 +
fma

3
,1 +

21}
m

in{fma
4 +

0
+

(|E
3 |+
|E

2 |+
|E

1 |)3
,fma

4
,3 +

0
+

(|E
2 |+
|E

1 |)3,fma
4
,2 +

0
+
|E

1 |3}
m

in{fma
1 +

0
+

(|E
4 |+
|E

3 |+
|E

2 |)3
,fma

2
,1 +

0
+

(|E
4 |+
|E

3 |)3,fma
3
,1 +

0
+
|E

4 |3}
=

177

fma
5
,1

=
(|E

5 |+
|E

4 |+
|E

3 |+
|E

2 |+
|E

1 |)m
in{4,3}

m
in{fma

5
,2 +

fma
1 +

12
,fma

5
,3 +

fma
2
,1 +

32
,fma

5
,4 +

fma
3
,1 +

30
,fma

5 +
fma

4
,1 +

21}
m

in{fma
5 +

0
+

(|E
4 |+
|E

3 |+
|E

2 |+
|E

1 |)4
,fma

5
,4 +

0
+

(|E
3 |+
|E

2 |+
|E

1 |)4
,fma

5
,3 +

0
+

(|E
2 |+
|E

1 |)4
,fma

5
,2 +

0
+
|E

1 |4}
m

in{fma
1 +

0
+

(|E
5 |+
|E

4 |+
|E

3 |+
|E

2 |)3
,fma

2
,1 +

0
+

(|E
5 |+
|E

4 |+
|E

3 |)3
,fma

3
,1 +

0
+

(|E
5 |+
|E

4 |)3
,fma

4
,1 +

0
+
|E

5 |3}
=

204

F
ig

.
1:

E
xam

ple
of

the
generalized

sparse
jacobian

chain
product

w
ith

unidirectionaljacobian
com

pression.
Sparsity

patterns
of

the
subchains

are
denoted

w
ith

{1
,0}

m
×

n
w
ith

corresponding
com

pressions
(a
−

d).
|1|denotes

a
dense

m
atrix.

For
each

subchain
the

w
hole

search
space

is
notated,w

here
the

respective
m
inim

a
are

underlined.
A
rrow

s
indicate

the
use

of
preaccum

ulated
sm

aller
subchains

in
the

optim
alaccum

ulation.

OPTIMIZATION OF SPARSE GENERALIZED JACOBIAN CHAIN PRODUCTS 9

1 q // n of factors (F_i 's)
2 m_0 n_0 |E_0| // n of outputs , n of inputs , n of elemental function

calls of F_0
3 0 1 0 ... // sparsity patterns (depend of the dimensions of each F_i)
4 0 1 1 ...
5 1 0 1 ...
6 ...
7 m_1 n_1 |E_1| // n outputs , n inputs , n elemental fc 's of F_1
8 // sparsity pattern of F_1
9 ...

10 m_q n_q |E_q| // n outputs , n inputs , n elemental fc 's of F_q
11 // sparsity pattern of F_q
12 ...
13

Fig. 2: Problem file structure. Gray colored text is included as explanation here and should be
omitted in the problem file.

color. The same procedure is continued until all rows/columns have a color assigned.
However, another heuristic can be implemented as a drop-in replacement for this naive
implementation. Note that in the implementation the optimization is restricted to
only one column and one row compression per factor, as proposed in subsection 3.1.

The optimization is implemented in gsjcpb_solve.cpp and can be executed
using gsjcpb_solve.exe problem_file s c after building the project files using
make. Thereby s toggles the optimization of the sparse problem or the dense problem
and c toggles the jacobian compression. If s or c are any other character than 0, the
optimization runs in sparse or compression mode respectively. problem_file should
point to a text file defining the specific problem. The assumed structure of the file is
shown in Figure 2.

The project also includes a random problem generator gsjcpb_generate.exe q
max_nm d, which prints a randomly generated problem to stdout. The number of
factors of the problem to be generated can be defined by q, with max_nm the maximal
dimension of each factor can be configured (each dimension is randomly selected
between 1 and max_nm) and with d a density of the sparsity patterns can be configured.
The sparsity pattern are generated randomly with the requirements that there is at
least one non-zero element per row and per column. This assumes that no factor has
constant outputs nor unused inputs, which is a valid assumption, because otherwise the
respective dimension of the factor could be reduced. Then the remaining zero-elements
are successively set to nonzero if p ∼ Uni([0, 1)), drawn from a uniform distribution, is
p < dnm−max{n,m}

nm−max{n,m} . This yields that in expectation the density of the sparsity pattern
is equal to d, if d is greater than the minimum density specified by the mentioned
requirement. Setting d = 0 will not generate any additional non-zeros.

case study. In Table 1 results of the accumulation costs for problems of growing
size are presented. All results are based on the problems provided under the folder
/problems/problem*, which were randomly generated by gsjcpb_generate.exe q
max_nm 0, so no additional non-zeros apart from one per column/row were added to
the sparsity pattern. In Table 1a all factors are assumed to be dense, while in Table 1b
the sparsity is considered in the matrix-matrix product without further cost reductions
using jacobian compression. Table 1c then additionally includes the cost reductions
using unidirectional jacobian compression (unveiled by the naive coloring heuristic).

10 TAMME CLAUS

Besides the optimal cost unveiled by the previously described algorithm, all tables also
include the cost of a naive tangent and naive adjoint accumulation as well as a naive
preaccumulation approach, where initially all individual factors are preaccumulated
and afterwards combined by an optimal matrix product bracketing.

Similarly to the results presented in [12], enormous reductions in the number of
fmas are visible even for the dense case (Table 1a). The costs for naive tangent and
naive adjoint do not change for the different restrictions, because for all problems the
resulting jacobian is dense. For optimal preaccumulation the costs improve slightly from
the dense case to the sparse case due to the reductions in sparse matrix multiplication
(Table 1b). Allowing jacobian compression considerably improves the costs, as each
individual factor can be accumulated in one tangent or adjoint pass (due to the problem
generation, Table 1c). The optimal number of fmas does not significantly improve for
both relaxations, only the cost for the problem (q = 50, max_nm = 50) reduces using
jacobian compression. This suggests, that the effectiveness is highly problem dependent
and cannot be generalized. More case studies with random sparsity pattern, but a
higher initial density (0.25 and 0.5) show similar results (the problem files can be
found in /problems025/problem* and problems05/problem*).

In a test case, where the accumulation of the product of 5 jacobians (dimension
between ∼ 200− 1100, random cost per factor between 100− 1000) with structured
sparsity patterns from the SuiteSparse Matrix Collection [1] was considered, fma re-
ductions are present. While for the dense problem 617210fma are calculated, the sparse
problem without compression needed 608846fma but with compression only 413006fma
are necessary. The problem file is also attached to the work (problem_suitesparse).

5. Conclusion. In this work we analyzed the cost reductions arising in the
generalized jacobian chain product when assuming sparse factors. Building upon [12]
the dynamic programming recurrence is expanded to also consider the cost reductions
from sparse matrix-matrix multiplication and jacobian compression. With the aid of an
example, the search space of each factor in the generalized sparse jacobian chain product
is illustrated. Besides some comments on the implementation, the implementation is
used to conduct a case study, where problems of growing size are analyzed with different
restrictions on the optimization problem. The results show the importance of problem
analysis, prior to applying algorithmic differentiation tolls to calculate jacobians.

Optimizing the accumulation of jacobians is only useful if the time spent on
finding the optimum + optimal accumulation < naive accumulation. Therefore one
has to balance between restrictions on degrees of freedom of the optimization and
finding the rigorous minimum. The more different levels of granularity available, the
better this balance can be found. Then an adaptive optimization, which can decide
between different restrictions, could find the balance between optimization time and
evaluation time.

Even more granularity, than discussed in this work, could be introduced to the
problem by assuming the function, which is to be differentiated, to be a graph of
smaller functions instead of the function composition considered here. Another more
technical improvement would be the considerations of memory constraints, especially
for adjoint propagations. Here we assumed, that sufficient memory is available to
record all intermediate variables and partial derivatives of the whole function, which
for large simulations obviously does not hold.

Ultimately we think that this work is one of many building blocks in the imple-
mentation of a AD mission planning framework, which coupled with an algorithmic
differentiation package is simply useful.

OPTIMIZATION OF SPARSE GENERALIZED JACOBIAN CHAIN PRODUCTS 11

length q max_mn Tangent Adjoint Preaccumulation Optimum
10 10 296 2072 779 296
50 50 839925 604746 740518 135228
100 100 19160886 21611697 9034346 231143
150 150 56863838 47527984 53425505 852466
200 200 34648499 381133489 174604509 2041326

(a) Optimal accumulation costs; assuming dense local factors. They are given for comparison with the
work [12].

length q max_mn Tangent Adjoint Preaccumulation Optimum
10 10 296 2072 681 296
50 50 839925 604746 620148 134838
100 100 19160886 21611697 8808143 231143
150 150 56863838 47527984 52552009 852466
200 200 34648499 381133489 172585171 2041326

(b) Optimal accumulation costs; considering the cost reductions due to the sparse matrix product. Ja-
cobian compression is not considered here.

length q max_mn Tangent Adjoint Preaccumulation Optimum
10 10 296 2072 345 296
50 50 839925 604746 36767 36132
100 100 19160886 21611697 237339 231143
150 150 56863838 47527984 867098 852466
200 200 34648499 381133489 2067283 2041326

(c) Optimal accumulation costs; considering both reductions, due to the sparse matrix product and
jacobian compression. Here only the jacobian coloring unveiled by a naive natural ordering heuristic is
applied, as proposed in subsection 3.1.

Table 1: Optimal accumulation costs for the generalized dense/sparse jacobian chain product with
problems of different size and length for the restrictions discussed in subsection 3.1. q denotes the
number of factors, max_nm the maximal number of dimensions. The accumulation costs using naive
homogeneous tangent mode, naive homogeneous adjoint mode, a homogeneous preaccumulation (all
local jacobians are preaccumulated and multiplied by optimal matrix product bracketing) and the
optimal accumulation are tabulated.

REFERENCES

[1] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Trans.
Math. Softw., 38 (2011), https://doi.org/10.1145/2049662.2049663.

[2] A. Gebremedhin, F. Manne, and A. Pothen, What color is your jacobian? graph
coloring for computing derivatives, SIAM review, 47 (2005), pp. 629–705, https://doi.org/
10.1137/S0036144504444711.

[3] R. Giering and T. Kaminski, Automatic sparsity detection implemented as a source-to-
source transformation, in Computational Science – ICCS 2006, V. N. Alexandrov, G. D.
van Albada, P. M. A. Sloot, and J. Dongarra, eds., Berlin, Heidelberg, 2006, Springer Berlin
Heidelberg, pp. 591–598.

[4] S. Goedecker and A. Hoisie, Performance Optimization of Numerically Intensive
Codes, Society for Industrial and Applied Mathematics, 2001, https://doi.org/10.1137/1.
9780898718218.

[5] A. Griewank, A mathematical view of automatic differentiation, Acta Numerica, 12 (2003),
p. 321–398, https://doi.org/10.1017/S0962492902000132.

[6] A. Griewank and C. Mitev, Detecting jacobian sparsity patterns by bayesian probing,

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1137/1.9780898718218
https://doi.org/10.1137/1.9780898718218
https://doi.org/10.1017/S0962492902000132

12 TAMME CLAUS

Math. Program., 93 (2002), pp. 1–25, https://doi.org/10.1007/s101070100281.
[7] A. Griewank and U. Naumann, Accumulating jacobians as chained sparse matrix prod-

ucts, Math. Prog, 3 (2002), p. 2003.
[8] U. Naumann, Optimal accumulation of jacobian matrices by elimination methods on the dual

computational graph, Math. Program., 99 (2004), pp. 399–421, https://doi.org/10.1007/
s10107-003-0456-9.

[9] U. Naumann, Optimal jacobian accumulation is np-complete, Mathematical Programming,
112 (2008), pp. 427–441, https://doi.org/10.1007/s10107-006-0042-z.

[10] U. Naumann, The Art of Differentiating Computer Programs, Society for Industrial and
Applied Mathematics, 2011, https://doi.org/10.1137/1.9781611972078.

[11] U. Naumann, On Sparse Matrix Chain Products, 01 2020, pp. 118–127, https://doi.org/10.
1137/1.9781611976229.12.

[12] U. Naumann, Optimization of generalized jacobian chain products without memory con-
straints, 2020, https://arxiv.org/abs/2003.05755.

[13] I . Newton, Philosophiae naturalis Principia mathematica, Cantabrigiae, [Cambridge Univer-
sity], editio secunda ed., 1713 [first edition 1687].

[14] V. Pieterse, D. Kourie, L. Cleophas, and B. Watson, Performance of c++ bit-
vector implementations, 01 2010, pp. 242–250, https://doi.org/10.1145/1899503.1899530.

[15] G. W. von Leibniz, Nova methodus pro maximis et minimis, itemque tangentibus, quae
nec fractas nec irrationales quantitates moratur, et singulare pro illis calculi genus, Lipsiae,
1684.

https://doi.org/10.1007/s101070100281
https://doi.org/10.1007/s10107-003-0456-9
https://doi.org/10.1007/s10107-003-0456-9
https://doi.org/10.1007/s10107-006-0042-z
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.1137/1.9781611976229.12
https://doi.org/10.1137/1.9781611976229.12
https://arxiv.org/abs/2003.05755
https://doi.org/10.1145/1899503.1899530

	Introduction
	Costs
	Costs of AD modes - tangent and adjoint
	Cost of sparse matrix multiplication
	Cost of recompression

	Generalized sparse jacobian chain product - dynamic programming
	Restricting the degrees of freedom
	Example

	Implementation and Case Study
	Conclusion
	References

