Material Reconstruction in EPMA as a Bayesian Inverse Problem

Lunch Talk, ACoM

RWTH Aachen University

Tamme Claus

Was once: Final Project - Stochastic Numerics SS2019 Roxana Pohlmann and Tamme Claus

supervised by: Prof. Raul Tempone, Nadhir Ben Rached and Anamika Pandey

June 2021

Electron Probe Microanalysis

Inverse Problem

 \rightarrow given measured k-ratios k^{exp} (normalized x-ray intensities)

What is the chemical composition *c* that caused those measurements?

1 Problem Setting

- 2 Solution of the Inverse Problem
- **3** Forward Model
- **4** Sources of Uncertainty
- **5** Sampling-Algorithm: Metropolis-Hastings
- **6** Results and Convergence Diagnostics

Classical approach: numerical optimization

- define a forward model $\boldsymbol{k}(\boldsymbol{c})$
- define a cost function $J(\boldsymbol{c}) = ||\boldsymbol{k}^{\mathsf{exp}} \boldsymbol{k}^{\mathsf{mod}}(\boldsymbol{c})||^2$
- numerical optimization (gradient, regularization, data filtering, ...)

Bayesian Inversion

- treat *c* as a random variable (random field)
- prior information: $\pi(c)$
- likelihood: $\pi(\mathbf{k}^{obs}|\mathbf{c})$ (forward model)

Given k^{obs} , what do we know about c?

Posterior Information

Given \mathbf{k}^{obs} , what do we know about \mathbf{c} ? joint probability $\pi(\mathbf{c}|\mathbf{k}^{obs})\pi(\mathbf{k}^{obs}) = \pi(\mathbf{c}, \mathbf{k}^{obs}) = \pi(\mathbf{k}^{obs}|\mathbf{c})\pi(\mathbf{c})$

• the posterior is the 'solution' to the inverse problem

using $\pi(\boldsymbol{c}|\boldsymbol{k}^{obs})$ we can compute:

• expected value of mass fractions $\mathbb{E}(\boldsymbol{c}|\boldsymbol{k}^{\mathsf{obs}})$

- maximum a posteriori (MAP) estimate (maximum likelihood)
- confidence intervals of the estimates

utilizing Monte Carlo methods (here Metropolis-Hastings)

EPMA: Forward Model

Electron Transport - M1-Model

- given: chemical composition c(x)
- <u>solve:</u> *M*1-Model (Linear Boltzmann, continously-slowing-down approximation, moment expansion, minimum entropy closure)

$$\partial_{\epsilon} \left(S(\boldsymbol{c},\epsilon) \begin{pmatrix} \psi_b^0(x,\epsilon) \\ \psi_b^1(x,\epsilon) \end{pmatrix} \right) + \nabla_x \begin{pmatrix} \psi_b^1(x,\epsilon) \\ \psi_{AE}^2(\psi_b^0,\psi_b^1) \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & T(\boldsymbol{c},\epsilon) I \end{pmatrix} \begin{pmatrix} \psi_b^0(x,\epsilon) \\ \psi_b^1(x,\epsilon) \end{pmatrix} = 0$$

- boundary conditions capture the electron beam
- we use: finite volume method (library: CLAWPACK)

Example: Electron Probe Microanalysis

X Ray Intensities

• <u>calculate:</u> k-ratios

$$\mathbf{k}_{bi} = \frac{1}{I_{std}^{i}} \int_{\Omega} \int_{\epsilon_{min}}^{\epsilon_{max}} e^{-\int_{d(x)} \mu^{i}(\mathbf{c}) \, \mathrm{d}y} \omega^{i} \sigma_{ion}^{i}(\epsilon) \mathcal{N}^{i}(\mathbf{c}) \psi_{b}^{0}(\mathbf{c}, x, \epsilon) \, \mathrm{d}\epsilon \, \mathrm{d}x$$

here we consider: ionization, fluorescence, absorption, ...

Sources of Uncertainty

Uncertainty in

- model (e.g. parameter, simplification)
- experimental setup

assume (academic):

- no model uncertainty
- independent gaussian noise (detector: Poisson point process)

$$oldsymbol{k}^{\mathsf{exp}} - oldsymbol{k}^{\mathsf{mod}}(oldsymbol{c}) \sim N(0, \mathsf{diag}(\sigma^2, ...))$$

Prior for mass fractions \boldsymbol{c}

Prior information

 $0 \leq oldsymbol{c}_{ik} \leq 1 \quad orall \stackrel{i=1,...,n_c}{_{k=1,...,n_e}}$

Dirichlet Distribution

 $X \sim \mathsf{Dir}(\alpha) \quad \alpha \in \mathbb{R}^n$

- pdf: $\frac{1}{B(\alpha)} \prod_{i=1}^{n} x_i^{\alpha_i 1}$
- normalizing constant $B(\alpha)$
- $\mathbb{E}[X_i] = \frac{\alpha_i}{\alpha_o}$ • $\operatorname{Var}[X_i] = \frac{\frac{\alpha_i}{\alpha_o}(1 - \frac{\alpha_i}{\alpha_o})}{\alpha_o + 1}$ • $\alpha_o = \sum_{i=1}^n \alpha_i$

$$\sum_{k=1}^{n_e} oldsymbol{c}_{ik} = 1 \quad orall \ i=1,...,n_c$$

- in each subdomain $c_{i:} \sim \text{Dir}(\alpha_i)$ independent
- we use $\alpha_i = [1, 1, \ldots] \forall i$
- uniform over the support

 \rightarrow prior $\pi(c)$

Metropolis-Hastings

Metropolis Hastings: Idea

- construct a Markov Chain (stationary distribution = desired distribution)
- propose a sample (based on the current sample)
- accept / reject the sample (probability based on detailed balance)

Sampling algorithm: Metropolis-Hastings

Algorithm 1: Metropolis-Hastings: to sample from $\pi(\boldsymbol{c}|\boldsymbol{k})$ 1 Initialize $c^{(0)} \sim \text{prior}$ **2** for i = 1, 2, ... do Propose: $\boldsymbol{c}^* \sim q(\cdot | \boldsymbol{c}^{(j-1)})$ 3 Acceptance Probability: 4 $A(\boldsymbol{c}^*|\boldsymbol{c}^{(j-1)}) = \min(1, \frac{q(\boldsymbol{c}^{(j-1)}|\boldsymbol{c}^*)\pi(\boldsymbol{c}^*|\boldsymbol{k}^{obs})}{q(\boldsymbol{c}^*|\boldsymbol{c}^{(j-1)})\pi(\boldsymbol{c}^{(j-1)}|\boldsymbol{k}^{obs})})$ $u \sim \text{Uni}([0, 1])$ 5 if u < A then 6 Accept: $c^{(j)} = c^*$ 7 else 8 Reject: $c^{(j)} = c^{(j-1)}$ 9

• How should we choose the proposal $q(\cdot|\boldsymbol{c}^{(i-1)})$?

Metropolis-Hastings: Proposal distribution $q(\cdot|m{c}^{(j-1)})$

<u>Often:</u> $\mathcal{N}(\boldsymbol{c}^{(j-1)}, \Sigma_{\rho})$ as proposal distribution

- with $m{c}^{(j-1)}$ as the mean and a chosen covariance Σ_{p}
- Not applicable here (conditions on *c*)

 \rightarrow Use a proposal distribution which (hopefully) is similar to the posterior

Idea: Use Dirichlet again

In each subdomain *i*: $\boldsymbol{c}_i^* \sim q(\cdot, \boldsymbol{c}^{(j-1)}) = \mathsf{Dir}(r \boldsymbol{c}_i^{(j-1)})$ $r \in \mathbb{R}$

• $\mathbb{E}[\boldsymbol{c}_i^*] = \boldsymbol{c}_i^{(j-1)}$

•
$$\operatorname{Var}[\boldsymbol{c}_{ik}^*] = \frac{\boldsymbol{c}_{ik}^{(j-1)}(1-\boldsymbol{c}_{ik}^{(j-1)})}{r+1}$$

• We can control the variance of the proposal with r

Numerical example: Parameters

Physical Domain	
Number of subdomains	1
Number of chemical elements	3
Numerical parameters	
Spatial Grid \bar{x}	40 \times 40, (1000 \times 800nm)
Number of steps ϵ	100, ([10, 17] keV)
Beam energy ϵ_{beam}	16 kV
Measurement noise σ^2	0.001
For the first try, we choose:	
Number of MCMC iterations	10000
Proposal variance <i>r</i>	120
Initial mass fraction $m{c}^{(0)}$	[0.33, 0.33, 0.33]

Results: Traceplot

Results: Histogram / KDE / Confidence Intervals

Autocorrelation at lag k

• Correlation of the signal with itself at lag k.

$$\hat{\rho}(k) = \frac{\sum_{i=1}^{T-k} (x_{i+k} - \bar{x})(x_i - \bar{x})}{\sum_{i=1}^{T} (x_i - \bar{x})^2}, \ \bar{x} = \sum_{i=1}^{T} \frac{x_i}{T}$$

Effective Sample Size

- ESS describes the number of weakly correlated samples.
- ESS = $\frac{N}{1+2\sum_{k=1}^{\infty}\rho(k)}$, with N number of samples and $\rho(k)$ the correlation at lag k
- Best expectation: $\frac{\text{ESS}}{N}$ close to 1.

Diagnostics: Autocorrelation and ESS

For r = 120, N = 10000: ESS = min [737.6, 732.4, 660.2] = 660

Diagnostics: Geweke test

Geweke test

- Idea A converged chain has the same expectation in the first and last part
- Say T_1 corresponds to the first 10% of the samples and T_2 to the last 50%
- $z = \frac{\mathbb{E}[T_1] \mathbb{E}[T_2]}{\sqrt{VarT_1 + VarT_2}}$ should converge to normal distribution

Diagnostics: Geweke test

Gelman-Rubin Convergence Diagnostic

- Evaluate MCMC convergence by comparing estimated between-chain and within-chain variance for each parameter
- $\boldsymbol{c}_m^{(j)}$ with $m=1\ldots M$ different chains and $j=1\ldots N$ samples
- \hat{c}_m sample mean and $\hat{\sigma}_m^2$ sample variance
- Overall mean $\hat{\boldsymbol{c}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\boldsymbol{c}}_m$
- Between-chain variance $B = \frac{N}{M-1} \sum_{m=1}^{M} (\hat{\boldsymbol{c}}_m \hat{\boldsymbol{c}})^2$
- Within-chain variance $W = \frac{1}{M} \sum_{m=1}^{M} \hat{\sigma}_m^2$
- Pooled variance $\hat{V} = \frac{N-1}{N}W + \frac{M+1}{MN}B$
- Test: if $\frac{\hat{V}}{W}$ is close to one, the chains have converged

Numerical Results

Parameter study (different variances of the proposal r)

Trace Plots: Impact of r

Histogram/KDE: Impact of r

Autocorrelation: Impact of r

Impact of r

0.45 0.40 700 -0.35 600 Effective sample size et 0.30 0.25 0.20 0.20 500 -400 -0.15 300 -0.10 0.05 200 -. 50 100 200 250 300 50 . 150 200 250 300 0 150 0 100 Proposal variance factor Proposal variance factor

Acceptance rate and ESS

More numerical experiments

More numerical experiments

More numerical experiments

Apply the Gelman-Rubin Diagnostic: M = 6, N = 10000, r = 150 for the three mass fractions (parameters) we get

•
$$c_0: \frac{\hat{V}}{W} = 1.0026$$

•
$$c_1: \frac{V}{W} = 1.0006$$

•
$$c_2$$
: $\frac{\hat{V}}{W} = 1.0029$

Conclusion and Outlook

Conclusion

- simple integration with existing forward models (no gradient information)
- uncertainties of the reconstruction result
- no convergence guarantee (run the chain forever)

Further Investigation

- more subdomains (\rightarrow more paramters, but more realistic)
- parameter tuning for r
- more realistic likelihood (include model uncertainties, other measurement errors)
- more sophisticated proposal distribution

References

Jonas Buenger, Silvia Richter, and Manuel Torrilhon.	
A deterministic model of electron transport for electron probe microanalysis.	
IOP Conference Series: Materials Science and Engineering, 304:012004, 01 2018.	
Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.	
Bayesian data analysis.	
Texts in statistical science. Chapman & Hall/CRC, 2nd ed edition, 2004.	
J. Kaipio and E. Somersalo.	
Statistical and Computational Inverse Problems.	
Applied Mathematical Sciences. Springer New York, 2006.	
S.M. Lynch.	
Introduction to Applied Bayesian Statistics and Estimation for Social Scientists.	
Statistics for Social and Behavioral Sciences. Springer New York, 2007.	
Niklas Mevenkamp.	
Inverse modeling in electron probe microanalysis based on deterministic transport equations, 09	
 2013.	
A. M. Stuart.	

Inverse problems: A bayesian perspective. Acta Numerica, 19:451–559, 2010.

Claus T.

Application of the adjoint method in gradient-based optimization to the m1-model in electron beam microanalysis, 2018.

A. Tarantola.

Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier Science, 1987.