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Forward Model: a k-ratio model based on the M1-Model

The spatial resolution in electron probe microanalysis (EPMA) is currently limited to a pixel
size approximately as large as the interaction volume of the electrons.
Aim: increase the spatial resolution of EPMA to a pixel size smaller than the

interaction volume

How: using more sophisticated reconstruction methods based on a model which
precisely simulates electron transport and x-ray generation inside the material to resolve
small concentration pixel

M1-Model to describe the electron fluence ψ0

• deterministic transport/collision model of the electron fluence ψ0 at energy ε and position x̄ in a material
domain Q described by its mass concentration field c(x̄)

• first order moment approximation to the Boltzmann equation for electron transport in continuous slowing down
approximation [1]
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with: stopping power S, transport coefficient T , minimum entropy closure ψ2
ME

Solution of the hyperbolic pde using the finite volume library CLAWPACK [2]
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Electron fluence ψ0 for a material of chromium, nickel and iron (electron beam: 17keV at x=500nm)

k-ratio model

The k-ratio ki,j(c) can be computed as (i refers to an element, j to one
of its characteristic k-ratios)
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with: standard intensity I i,jstd, attenuation e−
∫
.. dȳ, fluorescence yield ωiK,

ionization cross section σi,jion, number density of atomsN i
V , electron number

density n, electron velocity v
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Intensity of generated x-rays of chromium and nickel (including attenuation)

Inverse Problem: reconstruct concentrations from k-ratios
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Reconstruction of a concentration field (vertical layers) with the reference (background)
and iteration steps (lines) - 20 electron beams: centered each layer, 17keV -

Levenberg–Marquardt algorithm

Goal: given experimental k-ratios k̃i,j and a model ki,j(c) we search for
the concentration c∗ which minimizes their squared error

c∗ = arg min
c
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Gradient-based Optimization

ck+1 = ck + f (ck,∇cJ(ck)) with initial c0

• iterative schemes based on the gradient of the objective function

• Levenberg–Marquardt algorithm (exploits least squares structure)

Gradient via Finite Differences

∂J(c)

∂cm
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(forward FD)

→ one pde solve per parameter cm

Gradient via Adjoint State Method [4]

G(ψ, c) = 0 (forward model)
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λ = 0 (adjoint equation)

∇cJ(c) = ∇ch(ψ, c)− 〈λ, ∇cG(ψ, c)〉
with: the adjoint operator (·)∗ and J(c) = h(ψ, c)

→ two pde solves per gradient

Investigation of the objective function (Example: variation of the concentration in two cells)
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Sketch of experimental setup (material grid, beam positions, variable
cells p{1,2}, interaction volume)

Assume: only cNi = p{1,2} and cCr = 1− p{1,2} are variable

Result: Experiment 1 (one beam position): insufficient information to
reconstruct p{1,2}

Experiment 2 (two beam positions): unique minimum for p{1,2}
Also: multiple beam energies for depth information [3]

Further investigation: Definiteness and eigenvalues/vectors of the hessian
∇2
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The objective function J(p1, p2) for experiment 1 & 2 with variable p1 and p2

Next steps

• Investigation of the objective function and inverse problem with noisy
measurements

• Uncertainty quantification for reconstructed parameters (e.g. confidence
interval)
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