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jonas bünger, dr.
Research Lab for Applied and Computational Mathematics, ACoM

RWTH Aachen University

buenger@acom.rwth-aachen.de



Preface

This thesis marks the end of my master study in Computational Engineering Science at

RWTHAachen University. A journey that led me to research on electron probe microanalysis

as early as the winter term of 2016 which resulted in numerous smaller seminar projects,

a bachelor thesis ”Application of the Adjoint Method in Gradient-based Optimization to

the M1-Model in Electron Beam Microanalysis” and a publication ”A Novel Reconstruction

Method to Increase Spatial Resolution in Electron Probe Microanalysis”.

I am very grateful to my advisor and professor, Dr.Manuel Torrilhon, who introduced me

to the topic of reconstruction in EPMA and allowed me to continue this research. You were

always open-minded about any digressions I took into various other methods and frameworks

I considered useful for our problem. One of which led to the writing of this thesis.

Sincere thanks also to my advisor, Dr. Jonas Bünger. While you accompanied me through
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Abstract

Electron Probe Microanalysis (EPMA) is a non-destructive technique to determine the chem-

ical composition of material samples in the micro- to nanometer range. Based on intensity

measurements of characteristic x-radiation, information about the chemical composition of

the sample is obtained. The determination of underlying chemical composition represents

the inverse problem of reconstruction in EPMA.

All currently applied reconstruction methods are based on models assuming a homoge-

neous or layered structure of the reconstructed material. To increase the spatial resolution

of reconstruction in EPMA the combination of a more sophisticated reconstruction method,

that is based on a model which allows complex material structure, together with multiple

measurements with varying beam configurations is required. The diversity of the applica-

tion fields of EPMA poses a challenge for reconstruction methods. The method should be

able to answer different questions on material structure and take into account different prior

knowledge about material structure.

We present a reconstruction method based on the combination of gradient-based opti-

mization methods and a deterministic k-ratio model built on the %# model, an approxima-

tion of the linear Boltzmann equation. In addition, we present an efficient and extensible

method for differentiation of our model, which equips the reconstruction method with gen-

eral applicability. By specifying a material parametrization, the method can be adapted

to incorporate prior knowledge and reconstruct a wide variety of material structures. The

core of the reconstruction method is the computation of the gradient (the differentiation

method) which relies on a combination of the ’adjoint state method’ and the ’adjoint mode’

of algorithmic differentiation. Through examples, the flexibility of the k-ratio model and

the generality of the reconstruction/differentiation method is demonstrated.
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Zusammenfassung

Deterministische Rekonstruktion in Elektronenstrahl-

Mikroanalyse unter Verwendung einer flexiblen Ma-

terialparametrisierung

Die Elektronenstrahl-Mikroanalyse (engl. electron probe microanalysis, EPMA) ist eine zer-

störungsfreie Technik zur Bestimmung der chemischen Zusammensetzung von Materialpro-

ben im Mikro- bis Nanometerbereich. Auf der Grundlage von Intensitätsmessungen der

charakteristischen Röntgenstrahlung werden Informationen über die chemische Zusammen-

setzung der Probe gewonnen. Die Ermittlung der zugrunde liegenden chemischen Zusam-

mensetzung stellt das inverse Problem der Rekonstruktion in EPMA dar.

Alle derzeit angewandten Rekonstruktionsmethoden basieren auf Modellen, die von ei-

ner homogenen oder geschichteten Struktur des rekonstruierten Materials ausgehen. Um die

räumliche Auflösung der Rekonstruktion in EPMA zu erhöhen, ist die Kombination mehrerer

Messungen mit unterschiedlichen Strahlkonfigurationen zusammen mit einer neuartigen Re-

konstruktionsmethode erforderlich. Die Vielfalt der Anwendungsbereiche der EPMA stellt

eine Herausforderung für Rekonstruktionsmethoden dar. Die Methode sollte in der Lage

sein, verschiedene Fragestellungen zu beantworten und unterschiedliches Vorwissen über die

Materialstruktur miteinzubeziehen.

Wir stellen eine Rekonstruktionsmethode vor, die auf der Kombination von Gradienten-

basierten Optimierungsmethoden und einem deterministischen k-ratio-Modell basiert, das

auf dem %# -Modell, einer Approximation der linearen Boltzmann Gleichung, aufbaut. Zu-

sätzlich stellen wir eine effiziente und erweiterbare Methode zur Differenzierung unseres

Modells vor, die die Rekonstruktionsmethode mit allgemeiner Anwendbarkeit ausstattet.

Durch die Spezifikation einer Materialparametrisierung kann die Methode so angepasst wer-

den, dass sie Vorwissen miteinbezieht und verschiedenste Materialstrukturen rekonstruie-

ren kann. Den Kern der Rekonstruktionsmethode bildet die Berechnung des Gradienten

(die Differenzierungsmethode), die auf eine Kombination der ’adjoint state method’ und

dem ’adjoint mode’ der algorithmischen Differenzierung setzt. Anhand von Beispielen wird

die Flexibilität des k-ratio-Modells und die allgemeine Anwendbarkeit der Rekonstruktions-

/Differenzierungsmethode demonstriert.
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Introduction

1 The Inverse Problem of Reconstruction in EPMA

Electron Probe Microanalysis (EPMA) [Reimer, 1998; Heinrich and Newbury, 1991] is an

imaging technique used for the quantitative analysis of the composition of solid material

samples at the micro- to nanometer scale. The sample is excited by a focussed beam of

electrons which induces multiple relaxation processes inside the sample. In EPMA the

emission of characteristic x-rays is of special focus. If an electron which is induced by the

beam strikes a bound electron which occupies an atomic shell of an atom inside the specimen,

the bound electron is ejected from its shell and the atom is left with a vacancy. Outer shell

electrons fill this vacancy by emitting a quantized x-ray with an energy corresponding to the

energy level difference of the originating and the target shell. The energy levels of electron

shells are characteristic for a specific atom, hence the energy of the emitted x-ray provides

information about the composition of the material sample. In Figure 1 we outline the main

physical processes that occur during an experiment.

In EPMA the emitted x-ray intensity is measured by counting detected x-rays. Because

of multiple uncertainties concerning the experimental instrument, the x-ray intensity � (/,9)
is normalized into a k-ratio : (/,9) using standard intensities � std(/,9) measured from a known

reference sample.

: (/,9) =
� (/,9)

� std(/,9)
(1)

Standard intensities � std(/,9) are measured using the same experimental setup (except the sam-

ple) as used for � (/,9) , therefore the normalization eliminates uncertain multiplicative factors

which influence the intensity, e.g. the detector efficiency. We denote a characteristic x-ray

(/, 9) by the atomic number / of the associated atom and by a transition 9 . The x-ray tran-

sition encodes target and originating shell of the electron transition, where we use IUPAC

notation, e.g.  − !2 for a transition from the !2 shell to the  shell.

An experiment yields multiple k-ratios; one for each of the considered x-ray transition.

Additionally, the experimental setup U, e.g. the beam position, energy or angle, can be

varied to obtain information about the material. But the collection of all k-ratios : =

{:U1

(/,9) , . . . , :
U2

(/,9) , . . .} does not directly reveal the composition of the material sample and a

reconstruction process is necessary. The crucial parts of a reconstruction are the definition of

parameters ? which describe a material composition and the definition of a k-ratio model : (?)
which predicts the observed k-ratios given a material composition ?. Then the reconstruction

1
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−

Sample S

Electron Beams

Interaction

Volumes

Detector

Atom

X-Rays

`n
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Figure 1: A sketch of the physical processes in EPMA. The sample S is rastered by electron beams

(blue) with different position `G . Electrons 4− from the electron beam (blue dotted line)

scatter inside the sample and strike bound electrons which leave a vacancy (blue circle).

Outer shell electrons (blue discs) fill this vacancy and release an x-ray of characteristic

energy (red wobbly line). The x-ray travels through the sample and is counted by a

detector. Beam electrons only excite a certain volume of the sample, the interaction

volume (gray ellipses) which scales with the beam energy `n .

can be formalized as follows:

?∗ = argmin
?

disc(: (?), :exp). (2)

Which means: find the set of parameters ?∗ which minimize a discrepancy disc(·, ·) of mod-

elled k-ratios : (?) and experimental k-ratios :exp. The definition of the parameters ? and

the model : (?) are decisive for the question(s) posed to the experiment, as explained in the

following.

2 Multifaceted Nature of the Reconstruction Prob-

lem

The applications of EPMA are manifold [Pinard et al., 2013; Moy et al., 2019; Llovet et al.,

2021]. From geology, and material science to electronics, researchers rely on EPMA to de-

termine material composition and structure of samples. Prior to the analysis the knowledge

about the material structure is different for each application. Whereas a material scientist

investigates e.g. a coated material with known constituents but unknown thicknesses, a

geologist might be interested in the chemical composition of a material.

Simultaneously, diverse applications pose a wide variety of questions for the reconstruc-

tion to unveil. A basic question is the determination of homogeneous concentrations in-

side the sample. A more advanced investigation is the reconstruction of structure (e.g.

the identification of the thickness of coatings, the determination of position and size of

inclusions or the shape characterization of diffusive material interfaces). The most gen-

eral question is the reconstruction of a general description of compounds. In this work

we consider mass concentrations d (G) : R3 → R=4 as the general description of com-

pounds (=4 is the number of constituents). Hence, the general reconstruction problem is

2
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d∗(G) = argmind (G) disc(: (d (G)), :exp).
The unique reconstruction of infinite dimensional mass concentrations d∗ (G) from a finite

set of measurements :exp is only possible with additional constraints or prior assumptions.

Additionally, the precise representation of uncertainty in d∗ (G) is a useful approach. In the

mathematical framework of inverse problem theory, knowing the uncertainty of the unknown

d∗ (G) is defined as the solution of the inverse reconstruction problem. Prior knowledge about

the material and the additional knowledge based on the experimental measurements reduces

general ignorance of d∗ (G).

2.1 Inverse Problem Theory

Inverse problem theory [Tarantola, 2005; Stuart, 2010] bases on the assumption, that the

observation (the k-ratio measurements :exp) relate with the model parameters (the material

description d) through

:exp = : (d) + [, (3)

where [ is a random variable. More generally, one defines the likelihood, the probability that

based on the material description d the model : (d) produces the data :exp. The probability
density function (pdf) of the likelihood is

c (:exp |d) = c[ (:exp − : (d)), (4)

where c[ is the pdf of the random variable [, which is usually referred to as noise, but might

also include model uncertainties.

Additionally, the prior knowledge about the material is encoded the prior pdf c (d).
Using Bayes Theorem, the resulting uncertainty about the material is the posterior pdf

c (d |:exp) = c (:exp |d)c (d)∫
c (:exp |d)c (d) dd

. (5)

The posterior is the probability, that d represents the reality given the measured observation

:exp. The posterior c (d |:exp) combines likelihood c (:exp |d) and prior c (d) and defines the

solution of the inverse problem.

The statistical approach to inverse problems is philosophical and for problems of a certain

size not (yet) applicable. However, it motivates concepts which are applied to solve real

world reconstruction problems. In Section B.1 we mention the computation of maximum

likelihood or maximum posterior estimates, which relate to Equations (4) and (5). Also,

the specification of the prior c (d) refers to regularization, a concept we discuss in the next

section.

2.2 Regularization

The representation of the unknown d (G) as a function has infinite dimensions. Therefore,

it can not be reconstructed from a finite set of data :exp even in the absence of noise.

The inverse problem is considered as being ill-posed, because no unique solution exists.

To mitigate the ill-posed behavior of the inverse problem, regularization adds information.

Thus, it is closely connected to the definition of prior knowledge about the material d from

inverse problem theory.

3
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Regularization is a far-reaching strategy that can be implemented in many forms. Ben-

ning and Burger [2018] give a comprehensive overview over classical and modern regulariza-

tion techniques. Often, they rely on the assumption of a certain regularity of the parame-

ters, concerning e.g. their value or their gradient. A well-studied regularization technique is

Tikhonov regularization, which assumes that the unknown is close to some expected value.

We mainly think of regularization as the definition of a parametrization of the material

description using d (G ; ?). Instead of specifying the material as a function d (G) with infinite

dimensions, we reduce the dimensionality to a finite dimensional parameter vector ?, which

parametrizes the mass concentrations d (G ; ?). The parametrization translates the general

reconstruction problem, which searches for mass concentrations d∗(G), into the reconstruc-

tion problem given in Equation (2), which searches for parameters ?∗ that describe structure

in the material.

Reducing the flexibility of the unknown d (G)  d (G ; ?) must be accompanied by the ad-

dition of carefully chosen material knowledge, because the specification of a parametrization

predefines all possible reconstruction results. Furthermore, the parametrization should fit

the available measurements. The more flexible the parametrization is, the more measure-

ments have to be provided, otherwise the measurements lack enough information and the

reconstruction result is ambiguous.

Examples A researcher might be interested in the thicknesses of multiple coatings, but

knows the composition of each coating. He encodes his prior assumptions into a material

parametrization d (G ; ?), provides measurements :exp and submits the task of reconstructing

the thicknesses ?∗.

Another research might be interested in the size, position and composition of a circular

material inclusion, but knows the substrate composition. He also specifies his prior knowl-

edge (substrate composition and inclusion shape) to the reconstruction problem in the form

of a material parametrization d (G ; ?). The computation of the material parameters ?∗ is

then subject to the reconstruction method.

Similarly, many other tasks can be specified up to the case where the researcher does

not know anything about the material a priori. Then he would iterate and experiment with

multiple material parametrizations until he is convinced, that the material model sufficiently

explains his available data.

2.3 Classical K-Ratio Models and Reconstruction Methods

Computational models, which are currently being used to predict k-ratios, can be classified

in two categories: Monte Carlo models and ZAF/q (dI)-models

For inhomogeneous materials Monte Carlo models [Llovet and Salvat, 2017; Ritchie, 2009]

are utilized. By sampling of electron trajectories based on random scattering processes in

the material, Monte Carlo models approximate the electron density distribution which is

induced by the bombardment with beam electrons. From the electron density distribution,

k-ratios can be computed by accounting for ionization, fluorescence and absorption effects.

However, Monte Carlo models are subject to statistical noise and are only deterministic in

the limit (by sampling infinitely many electron trajectories). The statistical noise hinders

the application of k-ratio models based on Monte Carlo methods in a reconstruction. For a

4
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reconstruction, the modelled k-ratios must be repeatedly evaluated and compared for similar

materials. If the k-ratios are superimposed by noise, no clear comparison is possible.

For homogeneous samples or samples which have a layered structure in depth, ZAF and

q (dI)-models [Pouchou and Pichoir, 1991; Heinrich and Newbury, 1991; Riveros and Castel-

lano, 1993], which directly approximate the ionization distribution have been developed.

While being very restrictive on the material structure, ZAF/q (dI)-models are very effi-

cient in computation. Reconstruction methods (termed Matrix Correction methods) which

are currently being used mainly build on ZAF/q (dI)-models. Therefore, the reconstruc-

tion methods and their results are also constrained by the assumption of homogeneity or a

layered structure.

The constraint of the material structure by the k-ratio model underlying the reconstruc-

tion method currently defines the analytical spatial resolution of EPMA [Moy and Fournelle,

2017; Buse and Kearns, 2020; Carpenter and Jolliff, 2015]. The interaction volume, the part

of the sample in which x-rays are generated is assumed to be homogeneous, and the sam-

ple is rastered by an electron beam ensuring that the interaction volumes of the different

experiments do not overlap to avoid ambiguous results. The material composition is re-

constructed independently for each electron beam position and the reconstruction result is

associated with the homogeneous material composition of the respective interaction volume.

Approaches to increase the spatial resolution based on the physical reduction of the inter-

action volume have been proposed [Moy et al., 2019]. However, smaller interaction volumes

also mean a weaker x-ray intensity and thus stronger noise in the measurement data.

We propose to apply more sophisticated reconstruction methods, which fuse k-ratios

measurements with different experimental setups and base on a model which allows inho-

mogeneous material structures smaller than the size of the interaction volume. Obviously,

the softening of the restriction that materials are homogeneous needs more information in

the available k-ratio measurements. The fusion of k-ratio measurements with different beam

position and different beam energies into one reconstruction process shows promising evi-

dence, that material structures smaller than the interaction volume can be resolved [Richter

et al., 2013; Claus et al., 2021].

3 Design of Our Model and Reconstruction Method

- Structure of the Thesis

The diversity of questions which are posed to EPMA illustrates the need to develop a

reconstruction method which remains general in the material parametrization. We base our

model on the same mathematical framework as Monte Carlo models. The electron transport

is governed by the Boltzmann equation, however instead of random sampling, we rely on a

deterministic approximation of the Boltzmann equation [Larsen et al., 1997; Duclous et al.,

2010; Mevenkamp, 2016; Bünger, 2021]. This allows the exact computation of gradients, the

main building block of reconstruction methods. Gradients based on Monte Carlo models

are polluted by statistical noise and their use in reconstruction methods is restricted.

On top of the k-ratio model, we propose to use a combination of Algorithmic Differen-

tiation [Naumann, 2011; Griewank, 2003] and the Adjoint State Method [Plessix, 2006] to

compute gradients of the k-ratio model. Algorithmic Differentiation is a method to com-

5



Introduction

pute gradients of numerical functions in a systematic (usually even automatic) and efficient

manner. The Adjoint State Method describes a way to efficiently differentiate models based

on partial differential equations (our Boltzmann approximation). The combination of both

allows us to remain generic both in the objective function and the material parametrization.

Structure of the Thesis In Chapter A (The Forward Problem) we describe the indi-

vidual parts of our k-ratio model: the %# -model for electron transport and its numerical

approximation using StaRMAP, the combination with ionization and fluorescence effects,

and the approximation of x-ray attenuation. We conclude the first chapter with validations

of our implementation and showcase its flexibility.

In Chapter B (The Inverse Problem) we motivate the formulation of the reconstruction

problem as an optimization problem, briefly introduce objective functions and gradient-based

optimization methods and then describe the combination of Algorithmic Differentiation with

the Adjoint State Method to compute gradients of our model. Chapter B is concluded with

a validation of the gradient computation and artificial reconstruction experiments.

This thesis is finalized with an outlook which summarizes the findings and motivates

further research of reconstruction in EPMA using deterministic transport equations.

Implementation of the Described Methods in the Programming Language ju-

lia The programming language (julia) is a rapidly growing programming language,

which is mainly focused on the implementation of numerical methods. While providing a

convenient programming syntax, it also enables high computational efficiency due to its

just-in-time compiler and the concept of dynamic dispatch. It might also be the language

of choice for further development of the reconstruction method, because using the concept

of dynamic dispatch, various optimizations of the reconstruction method based on different

parametrizations can be implemented conveniently.

As part of this thesis we developed StaRMAP.jl, a generic solver of radiation transport

equations (closely following the ideas presented in Seibold and Frank [2014] and Bünger

[2021]) which is implemented using the programming language julia.

On top of StaRMAP.jl we implemented routines, which can be utilized for a convenient

setup of numerical experiments to compute k-ratios and all other underlying physical quan-

tities. Thereby we depend on NeXLCore.jl [Ritchie, 2021b], a library which collects core

algorithms and data for x-ray microanalysis. The computation of the adjoint state equation

also utilizes StaRMAP.jl.

Additionally, we implemented multiple material parametrizations, which are differen-

tiable and can be linked to Algorithmic Differentiation libraries in julia: e.g. Zygote.jl

[Innes, 2018a], ReverseDiff.jl [Kelley, 2021] and ForwardDiff.jl [Revels et al., 2016].

One of the parametrizations uses core ideas of the neural network library Flux.jl [Innes,

2018b].

The connection to AD tools is exploited when computing gradients using the adjoint state

method. We also link the adjoint state method to the AD libraries, which has the advantage,

that both, the parametrization and the objective function, can be replaced effortlessly.

6



Chapter A

The Forward Problem

With the ultimate goal of solving the inverse problem of reconstruction, we must first specify

the forward problem. We dedicate Chapter A to the specification and solution of the forward

problem.

Chapter A is divided in Sections A.1 to A.4. In Section A.1 we describe and derive the

mathematical formulation of the deterministic k-ratio model, while in Section A.2 we address

the numerical computation of the introduced model. Sections A.1 and A.2 remain generic

in the material description d (G), but we exemplarily present possible parametrization of

d (G ; ?) in Section A.3. Section A.4 concludes Chapter A with the demonstration of numerical

experiments.
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Chapter A. The Forward Problem

A.1 A K-Ratio Model based on the PN-Model for

Electron Transport

In this section we present a deterministic k-ratio model [Mevenkamp, 2016; Bünger, 2021],

which is based on the %# moment expansion of the linear Boltzmann Equation in Continuous

Slowing Down approximation (BCSD). We specify the material by its mass concentrations

in Section A.1.1 as the input to the forward problem and discuss the successive parts in

the computation of k-ratios in Sections A.1.2 to A.1.6. In Section A.1.7 we describe the

modeling of the beam.

We aim for a generic model for k-ratios : (/,9) based on mass concentrations d (G)

: (/,9) (d (G)) =
� (/,9)

� std(/,9)
=

� (/,9) (d (G))
� (/,9) (dstd (G))

, (A.1)

which we, according to the usual definition in EPMA, model by the ratio of a measured � (/,9)
and a standard intensity � std(/,9) . Both intensities can be computed from the same model, only

the underlying material description, d (G) resp. dstd (G), changes.

A.1.1 Mass Concentrations

The mass concentration d8 of a constituent 8 ∈ {1, . . . , =4 } in a compound with =4 elements

is defined as the ratio of the mass "8 of the constituent 8 divided by the volume of the

compound. If we consider mass concentration fields d8 (G) at a given point G ∈ S ⊂ R3 with

dG ⊂ R3 a small volume around G , we consider mass and volume inside dG

d8 (G) =
"8

vol(dG) . (A.2)

The total mass of the compound is given by "tot =
∑=4
8=1"8 , hence the total density dtot (G)

of the compound is

dtot (G) =
∑=4
8=1"8

vol(dG) =

=4∑
8=1

d8 (G). (A.3)

We introduce the notation dtot (G) for the total density to distinguish it from the notation

for the vector of mass concentrations d (G) = (d1 (G), . . . d=4 (G))) which we use frequently.

In this work, we consider the mass concentrations as the general way to describe a

material and derive other material quantities which are required for the forward model based

on mass concentrations. This assumption is not generally applicable to all compounds (c.f.

Thwaites [1983]), but it simplifies notation and all methods we describe in Chapter B can

be modified to other material descriptions as well.

Modeling material quantities based on e.g. mass, volume or molar fractions is material

specific, and should be implemented individually for a particular material; thereby consider-

ing e.g. variations in mass concentrations due to different atomic arrangements like lattices

or molecules. We refer to Section A.3.1, where we present relations of mass concentra-

tions to mass and volume fractions based on simple assumptions, which are applied in our

simulations.

8



Chapter A. The Forward Problem

A.1.2 The Intensity of Generated X-Rays

The intensity of generated x-rays � (/,9) is a composition of multiple consecutive model parts:

� (/,9) = A (/,9) (d) ◦ X(/,9) (d) ◦ q (/,9) ◦ Ψ(d). (A.4)

Beginning with the innermost part, they are:

• the transport of induced electrons inside the sample, quantified by the electron fluence

Ψ(n, G,Ω) = |E (n) |=(n, G,Ω). The electron fluence is given by the number density of

electrons =(n, G,Ω) with energy n at position G moving in direction Ω weighted with

the velocity E (n) of electrons;

• the ionization of atoms leading to the emission of x-rays, the ionization distribution

q (G);

• the combination of the ionization distribution q (G) with the actual presence of atoms:

the x-ray generation distribution X(G); and

• the attenuation A experienced by the x-rays due to absorption and scattering.

While in Equation (A.4) direct dependence of the model operators on the mass concen-

trations is highlighted by ·(d), the list highlights the dependency of a realization of each

operator on the electron energy n, the position G and the direction Ω. Note that through the

parts of the model, the dimensionality of the variables decreases from (n, G,Ω) ∈ R+ ×R3 ×(2

to a scalar � (/,9) ∈ R. In the following the individual parts are discussed in further detail.

A.1.3 Mass Attenuation

X-rays, which are generated inside the sample, are attenuated while passing through to reach

the detector. Attenuation is the combination of losses in x-ray intensity due to absorption

and scattering. The attenuation of x-rays which are traveling along an axis (described by

I ∈ R) is commonly modeled using the Beer-Lambert law [Pinard, 2016]

mI
mI

= −` (I)I(I), (A.5)

a linear ODE, where I is the intensity and ` the linear attenuation coefficient. The ODE

has the solution

I(I) = I0 exp(−
∫ I

0

` (Ī) dĪ), (A.6)

which in the case of a constant attenuation coefficient ` simplifies to I(I) = I0 exp(−`I).
In our model, x-rays are generated from a continuous field, hence the initial intensity is

I0 = X(G). The attenuation factor for a position G in the material is the line integral from G

to the detector
∫
3 (G) · dĪ. The detected intensity is then given by the integral over the whole

material.

A (/,9) (X(/,9) ) =
∫

R3

exp

(
−

∫
3 (G)

` (/,9) (Ī) dĪ
)
X(/,9) (G) dG . (A.7)

The linear attenuation coefficient ` (/,9) (G) for compounds can be modeled by linear combi-

nation with mass concentrations d8

` (/,9) (G) =
=4∑
8=1

d8 (G)
(
`

d

)
8,(/,9)

, (A.8)
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Chapter A. The Forward Problem

whereby the mass attenuation coefficients
(
`

d

)
8,(/,9)

for elements 8 are interpolated for the

characteristic energy of an x-ray (/, 9). Implementations and data for mass absorption

coefficients can be found in Ritchie [2021a,b]; Chantler et al. [2009].

A.1.4 The X-ray Generation Distribution

To compute the x-ray generation distribution for an x-ray (/, 9), we weigh the ionization

distribution q (/,9) by the number of atoms of element / per unit volume
d/
�/

.

X(/,9) (q (/,9) ) =
d/ (G)
�/

q (/,9) (G). (A.9)

Thereby d/ (G) is the mass concentration and �/ the atomic mass of element / .

A.1.5 The Ionization Distribution

The ionization distribution field q (/,9) (G) of x-ray (/, 9) is given by product of the number

density of electrons =(n, G,Ω) traveling with velocity E (n) in direction Ω and a cross-section

f (/,9) (n) describing the fraction of collisions leading to the emission of x-rays.

q (/,9) (G) =
∫ ∞

0

f (/,9) (n)
∫
(2

|E (n) |=(n, G,Ω)︸             ︷︷             ︸
CΨ(n,G,Ω)

dΩ dn (A.10)

The cross-section f (/,9) (n) collects the ionization cross-section and the fluorescence yield.

Implementations and data for both can be found in Ritchie [2021b, 2020]; Bote et al. [2009];

Bote and Salvat [2008]; Cullen et al. [1997].

Due to the high dimensionality (R+×R3×(2) of the electron number density =(n, G,Ω) and
the electron fluence Ψ(n, G,Ω), a simulation of either is complex. Hence, it is advantageous

to derive a model for the averaged electron fluence. In Equation (A.10) the electron number

density only appears weighted by the velocity |E (n) | and averaged in direction Ω ∈ (2. We

define

k0
0 (n, G) =

∫
(2

|E (n) |=(n, G,Ω) dΩ (A.11)

and describe the %# model, a moment expansion that governs k0
0 (the zeroth moment of the

electron fluence Ψ), in the next section.

A.1.6 The Electron Fluence: PN-Model

For a detailed derivation of the %# model see Bünger et al. [2021]; Buenger et al. [2021].

Here only the expansion using the method of moments [Larsen et al., 1997] is described.

A.1.6.1 Continuous Slowing Down Approximation (CSD) of the Linear Boltz-

mann Equation

The Linear Boltzmann Equation [Cercignani, 1988] describes particle transport, where the

self-interaction between particles can be neglected and only (elastic and inelastic) scattering

with the background medium is considered. In the context of EPMA, the time dependence

in the linear Boltzmann equation is negligible and only the stationary solution is sought-

for. The fact that electrons most probably lose energy in a sequence of small energy losses,

10



Chapter A. The Forward Problem

justifies the replacement of the inelastic scattering operator by its continuous slowing down

approximation (CSD). The continuous energy loss is modeled using the stopping power

( (n, G), the average energy loss per path length. The stopping power governs parts of the

scattering operator in the linear Boltzmann equation, the leftover parts we call Q(n, G) [Ψ].
The resulting transport equation is an evolution equation for the electron fluence Ψ(n, G,Ω) =
|E (n) |=(n, G,Ω) given by:

− mn (( (n, G)Ψ(n, G,Ω)) + Ω∇GΨ(n, G,Ω) = Q(n, G) [Ψ(n, G,Ω)]. (A.12)

As mentioned, it is expensive to solve Equation (A.12) numerically, hence we will reduce the

model complexity using a Galerkin method which expands Ψ(n, G,Ω) into a linear combina-

tion of moments and basis function in Ω. The expansion is called the method of moments

[Larsen et al., 1997]. The spherical harmonics, an orthonormal set functions (2 → R, have

proven to be suitable basis functions, because they possess favorable properties which are

inherited to the resulting model (the %# model).

A.1.6.2 Digression: Spherical Harmonics

The real spherical harmonic [Müller, 1966]

.:; : (2 → R (A.13)

of degree ; ∈ N0 and of order : ( |: | ≤ ;) maps a direction Ω(`, i) ∈ (2, also represented by

polar ` ∈ [0, c] and azimuthal (longitudinal) angle i ∈ [0, 2c], to the real numbers R. The

real spherical harmonic .:
;
is given by

.:; (Ω(`, i)) = � |: |
;
%
|: |
;

(cos(`))




cos( |: |i) : > 0

1√
2

: = 0

sin( |: |i) : < 0

, �
|: |
;

= (−1) |: |
√

2; + 1

2c

(; − |: |)!
(; + |: |)! , (A.14)

where � |: |
;

is a normalization constant and % |: |
;

(cos(`)) is the associated Legendre polyno-

mial. In Figure A.1 the spherical harmonics up to degree ; ≤ 2 are shown on the surface of

a unit sphere.

Properties of Spherical Harmonics We recapitulate some properties of the spherical

harmonics, which are used to derive the %# model.

• Spherical harmonics form an orthonormal set of basis functions over the unit sphere (2

∫
(2
.:; (Ω).

:′

; ′ (Ω) dΩ = X;,; ′X:,:′ =



1 ; = ; ′ ∧ : = : ′

0 else
. (A.15)

• Spherical harmonics satisfy a recursion relation. The product of a spherical harmonic .:
;

with a direction Ω can be expressed by the recursion

Ω.:; (Ω) =
1

2

©«
(1 − X:,−1) (2 |: |−1;−1 .:

−

;−1 − 3
|: |−1
;+1 .:

−

;+1) − 4
|: |+1
;−1 .:

+

;−1 + 5
|: |+1
;+1 .:

+

;+1
Θ(:) ((1 − X:,1) (−2 |: |−1;−1 .−:−

;−1 + 3 |: |−1
;+1 .−:−

;+1 ) − 4 |: |+1
;−1 .−:+

;−1 + 5 |: |+1
;+1 .−:+

;+1 )
2(0:

;−1.
:
;−1 + 1

:
;+1.

:
;+1)

ª®®¬
. (A.16)

11



Chapter A. The Forward Problem

(a) .0
0

(b) .−1
1

(c) .0
1

(d) .1
1

(e) .−2
2

(f) .−1
2

(g) .0
2

(h) .1
2

(i) .2
2

Figure A.1: The spherical harmonics .:
;
(Ω(`, i)) up to degree ; = 2 visualized on a sphere. For

each degree ;, two additional orders : are added, hence the total number of spherical

harmonics with ; ≤ # is (# + 1)2.
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Ω .:
;
is even, if .:

;
is odd, if

4G (: < 0 ∧ : odd) ∨ (: ≥ 0 ∧ : even) (: < 0 ∧ : even) ∨ (: ≥ 0 ∧ : odd)
4~ : ≥ 0 : < 0

4I (; + :) even (; + :) odd

Table A.1: Classification of the spherical harmonics in even (4) and odd (>) functions with respect

to the Cartesian basis vectors (4G , 4~ and 4I).

Thereby the right-hand side only depends on spherical harmonics of degree ; − 1 and ; + 1.
The parameters used in this equation are:

Θ(:) =


1 : ≥ 0

−1 : < 0
(A.17a)

:+ =



: + 1 : ≥ 0

: − 1 : < 0
(A.17b) :− =



: − 1 : ≥ 0

: + 1 : < 0
(A.17c)

0:; =

√
(; − : + 1) (; + : + 1)

(2; + 3) (2; + 1) (A.17d) 1:; =

√
(; − :) (; + :)
(2; + 1) (2; − 1) (A.17e)

2:; =

√
(; + : + 1) (; + : + 2)

(2; + 3) (2; + 1)




0 : < 0
√
2 : = 0

1 : > 0

(A.17f)

3:; =

√
(; − :) (; − : − 1)
(2; + 1) (2; − 1)




0 : < 0
√
2 : = 0

1 : > 0

(A.17g)

4:; =

√
(; − : + 1) (; − : + 2)

2; + 1) (2; + 1)



√
2 : = 1

1 : > 1

(A.17h)

5 :; =

√
(; + :) (; + : − 1)
2; + 1) (2; − 1)



√
2 : = 1

1 : > 1

(A.17i)

• All spherical harmonics are eigenfunctions of isotropic operators (isotropic in a sense, that

they only depend on the angle Ω · Ω′, not directly on the direction Ω).∫
(2
f (Ω · Ω′). ;: (Ω

′) dΩ′
= f;.

;
: (Ω). (A.18)

The eigenvalue f; corresponding to the eigenfunction .:
;
only depends on the degree ; of

the spherical harmonic.

• We augment the spherical harmonics with a classification in even (4) and odd (>) functions

with respect to the Cartesian basis vectors (4G , 4~ and 4I). See Table A.1 for the distinction.

A.1.6.3 Spectral Galerkin Approximation

We apply the method of moments to the BCSD Equation (A.12). The electron fluence Ψ is

approximated by a linear combination of spherical harmonics up to degree ; ≤ # ∈ N0

Ψ(n, G,Ω) ≈ Ψ%# (n, G,Ω) =
∑

;≤#, |: | ≤;
k:; (n, G).

:
; (Ω). (A.19)
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The coefficients k:
;
(n, G) are the moments of the electron fluence Ψ and, since spherical

harmonics form an orthonormal basis of (2, the moment k:
;
is given by the scalar product

k:; (n, G) =
∫
(2

Ψ(n, G,Ω).:; (Ω) dΩ. (A.20)

Moments k:
;

of higher degree ; > # are assumed to be � 1, therefore negligible. The

zeroth spherical harmonic . 0
0 (Ω) is constant, so we can identify k0

0 (n, G) with the variable in

Equation (A.10).

From Equation (A.12) evolution equations for the moments k:
;
are derived by testing

(multiplying and integrating:
∫
(2

·.:′
; ′ (Ω) dΩ) with spherical harmonics. Testing with the

set of same spherical harmonics (; ′ ≤ #, |: ′ | ≤ ; ′) which are used in the approximation Ψ%#

leads to a system of equations, the %# model

− mn ((k ) +� (G) mGk +� (~) m~k +� (I) mIk + Ck = 0. (A.21)

The unknown variables are the coefficients k = {k:
;
}; ∈N0, |: | ≤; used in the %# approximation,

the moments of the electron fluence Ψ. We derive the summands in Equation (A.21) from

Equation (A.12) individually.

Stopping Power The first term in Equation (A.12) is linear in Ψ and the spherical har-

monics form an orthonormal basis, hence

∫
(2

−mn
©«
( (n, G)

∑
;≤#, |: | ≤;

k:; (n, G).
:
; (Ω)

ª®¬
.:

′

; ′ (Ω) dΩ

= −mn
©«
( (n, G)

∑
;≤#, |: | ≤;

k:; (n, G)
∫
(2
.:; (Ω).

:′

; ′ (Ω) dΩ︸                     ︷︷                     ︸
X;,;′X:,:′

ª®¬
= −mn (( (n, G)k:

′

; ′ (n, G)).

(A.22)

The stopping power ( is a material property, where for a compound we assume (c.f. Sec-

tion A.1.1) additivity using the mass concentrations d8 (G)

( (n, G) =
=4∑
8=1

d8 (G)(8 (n). (A.23)

Thereby (8 (n) is a specific stopping power of pure element 8. For the stopping power of

pure elements there exists multiple models, e.g. a model based on the Bethe-Loss formula

[Reimer, 1998] or interpolation tables from a more advanced model [Cullen et al., 1997;

Bünger, 2021]; the latter we use in our current implementation.

Transport Coefficient The transport coefficient � is derived from the scattering operator

Q(n, G) [Ψ]. In Buenger et al. [2021] the operator is given as

Q(n, G) [Ψ(n, G)] =
∫
(2
fB (n, G,Ω′ · Ω)Ψ(n, G,Ω′) dΩ′ − fC (n, G)Ψ(n, G,Ω), (A.24)

where fB and fC are scattering cross-sections of elastic and inelastic collisions. The scattering

operator Q is linear in the electron fluence Ψ, so if we replace Ψ with its %# approximation
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and test with the spherical harmonic .:
′

; ′ , we derive the transport coefficient matrix C by

similar argument as in Equation (A.22).

C(;,:),(; ′,:′) = −
∫
(2

Q(n, G) [.:; ].
:′

; ′

= −
∫
(2

(∫
(2
fB (n, G,Ω · Ω′).:; (Ω

′) dΩ′ − fC (n, G).:; (Ω)
)
.:

′

; ′ dΩ

= −(f; (n, G) − fC (n, G))X (;,:),(; ′,:′) .

(A.25)

Due to the eigenfunction property of spherical harmonics, C is diagonal with entries f; −fC ,
which are the eigenvalues of the scattering operator Q corresponding only to the degree

; of the spherical harmonic .:
;
. As for the stopping power, we assume additivity for the

transport coefficients using the mass concentrations d8 (G)

(f; − fC ) (n, G) =
=4∑
8=1

d8 (G) (f; − fC )8 (n)︸         ︷︷         ︸
BC;,8 (n)

. (A.26)

The specific coefficients C;,8 (n) = (f;−fC )8 (n) for the pure elements are derived from scattering

cross-sections generated using the code from Salvat et al. [2005], which in Bünger [2021] are

tabulated for the different degrees of the spherical harmonics.

Advection Matrices By testing the advection operator Ω · ∇GΨ with the spherical har-

monic .:
′

; ′ , the advection matrices � (G) , � (~) and � (I) are identified using the recursion

relation given in Equation (A.16) and the coefficients in Equation (A.17).

(� (G) ) (;,:),(; ′,:′) =
∫
(2

Ω1.
:
; .

:′

; ′ dΩ =
1

2







2
|: |−1
;−1 : ′ = :− ∧ : ≠ −1
−4 |: |+1

;−1 : ′ = :+

0 else

; ′ = ; − 1




−3 |: |−1
;+1 : = :− ∧ : ≠ −1

5
|: |+1
;+1 : = :+

0 else

; ′ = ; + 1

0 else

(A.27a)

(� (~) ) (;,:),(; ′,:′) =
∫
(2

Ω2.
:
; .

:′

; ′ dΩ =
Θ(:)
2







−2 |: |−1
;−1 : ′ = −:− ∧ : ≠ 1

−4 |: |+1
;−1 : ′ = −:+

0 else

; ′ = ; − 1




3
|: |−1
;+1 : = −:− ∧ : ≠ 1

5
|: |+1
;+1 : = −:+

0 else

; ′ = ; + 1

0 else

(A.27b)

(� (I) ) (;,:),(; ′,:′) =
∫
(2

Ω3.
:
; .

:′

; ′ dΩ =




0:
;−1 : ′ = : ∧ ; ′ = ; − 1

1:
;+1 : ′ = : ∧ ; ′ = ; + 1

0 else

(A.27c)
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Note that the advection matrices are very sparse and possess a specific pattern with

respect to the classification of the spherical harmonics (Table A.1). The advection matrix

in a direction 3 ∈ {4G , 4~, 4I} does only have non-zero entries if the 4/>-classifications of the

respective spherical harmonic functions .:
;

and .:
′

; ′ differ in one direction 3 and coincide

in the other two Cartesian directions. Furthermore, all advection matrices are symmetric

� (=)) = � (=) , which can quickly be verified by their definition using .:
;
.:

′

; ′ = .:
′

; ′ .
:
;
. This

sparsity of the advection matrices is exploited in the numerical method and paves the way

towards an efficient implementation of the %# model.

A.1.7 Beam Modeling: PN-Boundary Conditions

Initial conditions for the electron fluence Ψ in energy are specified at a given maximum

energy ninit.

Ψ(ninit, G,Ω) = Ψ0 (G,Ω). (A.28)

The translation of an initial condition in energy Ψ0 (G,Ω) into its moments k:
;,0
(G) is straight-

forward. Using Equation (A.20), the initial condition Ψ0 is expanded into the respective

moments. In the following experiments, we will typically use Ψ0 (G,Ω) = 0, assuming that no

beam electrons are present inside the sample at n = ninit.

For an implementation, the spatial variable G is confided to S ⊂ R3. Then a proper

treatment of boundary conditions in space is necessary. At a point G ∈ mS with = the

outward boundary normal, we are allowed to prescribe the ingoing part of the electron

fluence Ψ

Ψ(n, G,Ω) = Ψin (n, G,Ω) Ω · = < 0. (A.29)

In Bünger et al. [2021] boundary conditions are derived by testing Equation (A.29) with

the spherical harmonics of odd (>) classification in the respective direction of the boundary

normal =. The boundary conditions for the moments k are given by

k>,= (n, G) = ! (=)> �
(=)
>,4 k4,= (n, G) + 6>,= (n, G) G ∈ mS, (A.30)

where k>,= are the moments corresponding to odd spherical harmonics and k4,= the moments

corresponding to even spherical harmonics in the direction =. The matrix � (=)
>,4 is the block

of the advection matrices which maps even (in direction =) moments to odd moments (in

direction =). Direct formulas for ! (=)> are taken from Bünger [2021] and reproduced in

Section C.1. The source 6>,= is derived by testing the ingoing electron fluence Ψin with

spherical harmonics .>,= which are odd in the direction of the boundary normal =

6>,= (n, G) =
∫
= ·Ω<0

.>,= (Ω)Ψin (n, G,Ω) dΩ. (A.31)

Beam Parameters The electron beam hits the sample at a surface (in our examples

usually {(G1, G2, G3) ∈ S |G1 = 0}). We model the beam using an isotropic Gaussian distri-

bution on the material surface, a Gaussian distribution in energy and a three-dimensional

Von-Mises-Fisher distribution (a distribution defined on (2) in direction. Using respective

means `G and `n , variances fG and fn as well as the mean direction `Ω and concentration

parameter ^ of the Von-Mises-Fisher distribution, we define

Ψin (n, G,Ω) = N
(
(G2, G3)) |`G , diag(fG )

)
N(n |`n , fn )F (Ω |`Ω, ^), (A.32)
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(a) ^ = 10. (b) ^ = 50

Figure A.2: The probability density function of the Von-Mises-Fisher distribution visualized on a

sphere for different values of the concentration parameter ^. It illustrates the depen-

dence of the incoming beam electron fluence Ψin on the direction Ω.

where N is the probability density function of the Gaussian distribution and F is the

probability density function of the Von-Mises-Fisher distribution. Integration of F into

the respective moments 6 (=) (n, G) is performed numerically.
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A.2 Numerical Methods for the K-Ratio Model

This section covers the numerical methods to compute k-ratio using the model presented in

Section A.1. In Section A.2.1 we describe StaRMAP, a numerical method for the solution

of the moment expansion for the electron fluence, based on a generic moment equation and

detail on the solution of the %# -equation in Section A.2.2. In Sections A.2.3 and A.2.4 we

describe the numerical methods for the ionization distribution and attenuation.

A.2.1 StaRMAP: A second order Staggered Grid Method for

Radiation Moment Approximation

This section describes the numerical method StaRMAP, which solves spherical harmonic

moment systems. The main characteristic of StaRMAP is the discretization of the solution

variable on staggered grids. Allowed by a specific structure of the equation, the staggered

grid discretization leads to an efficient second order approximation. It is originally published

in Seibold and Frank [2014] and already used in the context of electron transport in EPMA

in Bünger [2021]; Bünger et al. [2021]; Buenger et al. [2021]. We describe StaRMAP based

on the generic moment equation:

(mCk +� (G) mGk +� (~) m~k +� (I) mIk +�k = & ∀C ∈ R, G ∈ S ⊂ R
3

k>,= (C, G) = " (=)
>,4 k4,= (C, G) + 6>,= (C, G) ∀C ∈ R, G ∈ mS.

(A.33)

Later we will show how to adapt the %# -equation (Equation (A.21)) to fit this generic

equation.

The solution variable k (C, G) : R × R3 → RN is subdivided into variables described by

disjoint index sets {444, 4>>, >4>, >>4, >44, 4>4, 44>, >>>}. The notation is interpreted as a clas-

sification in even (4) and odd (>) variables with respect to a space dimension, so that e.g.

4>> is the index set being even in direction G , odd in direction ~ and odd in direction I. We

assume an ordering of the solution variable k

k (C, G) =
©«

k444 (C, G) ∈ RN444

k4>> (C, G) ∈ RN4>>

...

k>>> (C, G) ∈ RN>>>

ª®®®®®¬
: R × R

3 → R
N . (A.34)

With respect to the ordering, the matrices in Equation (A.33) are assumed to possess

specific patterns: The matrices ( (C, G) : R × R3 → RN×N and � (C, G) : R × R3 → RN×N are

diagonal; the source vector & (C, G) : R × R3 → RN is arbitrary; and the advection matrices

� (G) , � (~) and � (I) ∈ RN×N are assumed to be of block sparse form, with respect to the

4/> index sets. The only blocks, which are allowed to have non-zero entries, are blocks

with differing 4/> classification in the direction of the advection matrix (G , ~ or I) and

coinciding 4/>/ classification in the other two directions. For example the advection matrix

in G direction � (G) can only possess non-zero values in the block � (G)
4★•,>★• and in the block

�
(G)
>★•,4★•, where ★, • ∈ {4, >}. All other parts of the advection matrix � (G)

4 · ·,4 · · and �
(G)
> · ·,> · · are 0.
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Regarding the ordering of the solution variable Equation (A.34), we can exemplarily write

� (G)
=

©«

0 0 0 0 �
(G)
444,>44 0 0 0

0 0 0 0 0 0 0 �
(G)
4>>,>>>

0 0 0 0 0 0 �
(G)
>4>,44> 0

0 0 0 0 0 �
(G)
>>4,4>4 0 0

�
(G)
>44,444 0 0 0 0 0 0 0

0 0 0 �
(G)
4>4,>>4 0 0 0 0

0 0 �
(G)
44>,>4> 0 0 0 0 0

0 �
(G)
>>>,4>> 0 0 0 0 0 0

ª®®®®®®®®®®®®®®¬

. (A.35)

The advection matrices in ~ and I direction can be written similarly.

A.2.1.1 Grid Structure

Consider the domain as a cuboid S = (G!, G* ) × (~!, ~* ) × (I!, I* ) ∈ R3. Per dimension

3 ∈ {G,~, I} we introduce an even and an odd linearly spaced grid. The endpoints of the

even grid coincide with the limits of the domain S, the points of the odd grid are shifted by

a half-step Δ3
2
. We define the grid points as

6
(3)
4 = {(3! + (8 − 1)Δ3) |8 ∈ {1, . . . , =3 }}, 3 ∈ {G,~, I} (A.36a)

6
(3)
> = {(3! + (8 − 3

2
)Δ3) |8 ∈ {1, . . . , =3 + 1}}, 3 ∈ {G,~, I}. (A.36b)

The step size for both grids is Δ3 =
3* −3!
=3−1 , 3 ∈ {G,~, I}. From the scalar grids 6 (3)

4/> we

generate eight 3D grids � · · · using the Cartesian product

�444 = 6
(G)
4 × 6 (~)4 × 6 (I)4

�4>> = 6
(G)
4 × 6 (~)> × 6 (I)>

...

�>>> = 6
(G)
> × 6 (~)> × 6 (I)> .

(A.37)

In Figure A.3 the grid coordinates and the domain boundary are visualized, with the distinc-

tion in even and odd grids. Because of ghost points (outside the domain boundaries) which

will be used for boundary conditions, odd grids contain more points than the respective even

grids |6 (3)> | = =3 + 1 = |6 (3)4 | + 1.

We discretize the components of the solution variable k · · · on the corresponding grids

� · · ·, thus at a given point on the Grid �•★⊲ (★, •, ⊲ ∈ {4, >}) only the discretized values of the

subset k•★⊲ of the solution variable are explicitly known. We denote indexing of the solution

variable by e.g. (k44> )8, 9,: where 8 ∈ {1, . . . , =G }, 9 ∈ {1, . . . , =~} and : ∈ {1, . . . , =I + 1}.

A.2.1.2 Finite Difference Space Derivatives

Because of the structure of the advection matrices � (3) the time derivative of the solution

variable e.g. mCk444 only depends on spatial derivatives of solution variables of the switched

4/> classification, e.g. mGk>44 . The discretization on staggered grids allows us to define half-

step central finite difference operators, which approximate the derivative at points located

between the discretization points of e.g. k>44 , exactly where mCk444 is discretized. Hence,
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Figure A.3: The spatial coordinates of the 3D staggered grids. The 4/> property in the respective

dimensions is illustrated by properties(color, shape and fill/stroke) of the marker(G-

direction: 4 circles, > diamonds; ~-direction: 4 blue, > red; I-direction: 4 filled, >

stroked) For example the filled blue circles are the grid points of �444 , which reside on

the vertices of the domain (black box). The total number of grid points is the minimal

number possible to discretize a 3D cuboid, hence the 444 grid only discretizes the

vertices of the domain. Grid points outside the domain are considered ghost-points,

nevertheless they are equally structured to the grid points inside the domain.

we can define a semi-discretization of Equation (A.33) (only the spatial derivatives are

discretized) by

(444mCk444 +� (G)
444,>44�

(G)
>→4k>44 +�

(~)
444,4>4�

(~)
>→4k4>4 +� (I)

444,44>�
(I)
>→4k44> +�444k444 = &444

(4>>mCk4>> +� (G)
4>>,>>>�

(G)
>→4k>>> +�

(~)
4>>,44>�

(~)
4→>k44> +� (I)

4>>,4>4�
(I)
4→>k4>4 +�4>>k4>> = &4>>

...

(>>>mCk>>> +� (G)
>>>,4>>�

(G)
4→>k4>> +�

(~)
>>>,>4>�

(~)
4→>k>4> +� (I)

>>>,>>4�
(I)
4→>k>>4 +�>>>k>>> = &>>>

(A.38)

where the finite difference operator � (3)
★→• maps from a discretization on ★ ∈ {4, >} to a

discretization on • ∈ {>, 4} grids in the respective dimension 3 of the operator. We define

then as (exemplarily in G-direction, ~ and I follow similarly)

(
�

(G)
4→>k444

)
8, 9,:

=




1
ΔG

(
(k444 )8, 9,: − (k444 )8−1, 9,:

)
8 ∈ {2, . . . , =G }

0 8 ∈ {1, =G + 1}
(A.39a)

(
�

(G)
>→4k>44

)
8, 9,:

=
1

ΔG

(
(k>44 )8+1, 9,: − (k>44 )8, 9,:

)
8 ∈ {1, . . . , =G } (A.39b)

For rigorous definition, derivatives at ghost points are defined to be zero, c.f. Equa-

tion (A.39a). However, the spatial derivatives at ghost points are not required because

the value of ghost points is determined by the boundary conditions.

A.2.1.3 Time Discretization / Stepping Scheme

We describe the evolution of the solution variable k for one time step [C, C + ΔC]. For the

convenient notation of the time discretization, we define new index sets e = 444∪4>>∪>4>∪>>4

20



Chapter A. The Forward Problem

and o = >44 ∪ 4>4 ∪ 44> ∪ >>> based on the 4/> classifications

k =

(
ke

ko

)
ke =

©«

k444

k4>>

k>4>

k>>4

ª®®®®¬
ko =

©«

k>44

k4>4

k44>

k>>>

ª®®®®¬
. (A.40)

The solution components in ke and ko are not discretized on the same grids, nevertheless we

collect them for convenient notation. The advection matrices � (3) are still of block-sparse

form with respect to the index sets e and o in the sense, that � (3)
★,★ = 0 for ★ = {e, o} and

3 = {G,~, I}. Hence, we can write the semi-discretization (Equation (A.38)) as(
(e 0

0 (o

)
mC

(
ke

ko

)
+

(
0 �

(G)
e,o

�
(G)
o,e 0

) (
�

(G)
e→o 0

0 �
(G)
o→e

) (
ke

ko

)

+
(

0 �
(~)
e,o

�
(~)
o,e 0

) (
�

(~)
e→o 0

0 �
(~)
o→e

) (
ke

ko

)

+
(

0 �
(I)
e,o

�
(I)
o,e 0

) (
�

(I)
e→o 0

0 �
(I)
o→e

) (
ke

ko

)

+
(
�e 0

0 �o

) (
ke

ko

)
=

(
&e

&o

)
.

(A.41)

Where we exemplarily denote the advection matrix (c.f. with Equation (A.35))

�
(G)
e,o =

©«

�
(G)
444,>44 0 0 0

0 0 0 �
(G)
4>>,>>>

0 0 �
(G)
>4>,44> 0

0 �
(G)
>>4,4>4 0 0

ª®®®®®¬
(A.42)

and the finite difference operators

�
(G)
e→o = diag(� (G)

4→> , �
(G)
4→> , �

(G)
>→4 , �

(G)
>→4 ) (A.43a)

�
(G)
o→e = diag(� (G)

>→4 , �
(G)
4→> , �

(G)
4→> , �

(G)
>→4 ). (A.43b)

In the time interval [C, C + ΔC] the equation components (e(C, G), (o (C, G), �e(C, G), �o(C, G),
&e (C, G) and &o(C, G) are approximated constant and associated with C + ΔC

2
.

In Equation (A.41) the e part and the o part of the solution variable couple only due to

the mCk term. If either ke or ko is assumed to be frozen mC · = 0, the equations decouple into

two ordinary differential equation (ODE) systems.

(emCke +�eke = &e −� (G)
e,o �

(G)
o→eko −� (~)

e,o �
(~)
o→eko −� (I)

e,o�
(I)
o→eko (A.44a)

(omCko +�oko = &o −� (G)
o,e �

(G)
e→oke −� (~)

o,e �
(~)
e→oke −� (I)

o,e�
(I)
e→oke (A.44b)

Since for each equation the part of the solution vector which appears on the right-hand side

of Equation (A.44a) or Equation (A.44b) is frozen, both ODEs are of very simple structure.

Additional to the constant right-hand side, the matrices (e, (o, �e and �o are diagonal, then

each of Equation (A.44a) and Equation (A.44b) are a set of scalar equations of the form

BmC 5 (C) + 2 5 (C) = A . (A.45)
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Assuming that B ≠ 0 this equation has the analytical solution

5 (C) = : exp( −2C
B

) + A
2
, (A.46)

where : ∈ R. From a given 5 (C) at time C , we can compute 5 (C + ΔC) as

5 (C + ΔC) = : exp( −2 (C + ΔC)
B

) + A
2

= (5 (C) − A

2
) exp( −2ΔC

B
) + A

2

= 5 (C) + (5 (C) − A

2
) exp( −2ΔC

B
) − (5 (C) − A

2
)

= 5 (C) + ΔC

B
(A − 2 5 (C))� ( −2ΔC

B
)

(A.47)

where � (2) = exp(2)−1
2

. Using Equation (A.47) we can define update operators for the two

ODE systems Equation (A.44a) and Equation (A.44b)

* ΔC
e

(
ke

ko

)
=

(
ke

ko

)
+ ΔC

(
(−1
e

('e −�eke)� (−�e(
−1
e
ΔC)

0

)
(A.48a)

* ΔC
o

(
ke

ko

)
=

(
ke

ko

)
+ ΔC

(
0

(−1
o

('o −�oko)� (−�o(
−1
o
ΔC)

)
(A.48b)

where � (2) is applied elementwise to the diagonal matrices and the right-hand sides are

denoted by

'e = &e −� (G)
e,o �

(G)
o→eko −� (~)

e,o �
(~)
o→eko −� (I)

e,o�
(I)
o→eko (A.49a)

'o = &o −� (G)
o,e �

(G)
e→oke −� (~)

o,e �
(~)
e→oke −� (I)

o,e�
(I)
e→oke. (A.49b)

To evolve a full time step [C, C + ΔC] for both parts of the solution ke and ko, we apply

Strang splitting and chain the update operators(
ke(C + ΔC)
ko(C + ΔC)

)
= * ΔC

(
ke(C)
ko(C)

)
= *

ΔC
2

o ◦* ΔC
e

◦*
ΔC
2

o

(
ke (C)
ko (C)

)
. (A.50)

Due to the half-step central finite difference operators and the Strang splitting in time

the resulting method is second order accurate [Bünger, 2021].

A.2.1.4 Boundary Conditions

Boundary values of even variables (even in the direction of the respective boundary) can

be updated just as internal values, because odd variables are also defined on the ghost

points and the spatial derivative can be approximated. However, for boundary values of odd

variables special treatment is required. We prescribe values of odd variables on ghost points

such that the boundary conditions from Equation (A.33)

k>,= (C, G) = " (=)
>,4 k4,= (C, G) + 6>,= (C, G) (A.51)

are satisfied for interpolated odd variables. We derive them exemplary for odd variable

values on ghost points in G-direction (★, • ∈ {4, >}).

(k>★•)G=G!, 9,: ≈
(k>★•)1, 9,: + (k>★•)2, 9,:

2
= −" (G)

>★•,4★• (k4★•)1, 9,: + 6
(G)
>★•,! (A.52a)
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(k>★•)G=G' , 9,: ≈
(k>★•)=G , 9,: + (k>★•)=G+1, 9,:

2
= "

(G)
>★•,4★• (k4★•)=G , 9,: + 6

(G)
>★•,' (A.52b)

Thereby " (=)
·· ·, · · · is the respective block of " (=)

>,4 . We can rewrite Equation (A.52) into explicit

formulas for the boundary values (k>★•)1, 9,: and (k>★•)=G+1, 9,: .

(k>★•)1, 9,: = 2
(
−" (G)

>★•,4★• (k4★•)1, 9,: + 6
(G)
>★•,!

)
− (k>★•)2, 9,: (A.53a)

(k>★•)=G+1, 9,: = 2
(
"

(G)
>★•,4★•(k4★•)=G , 9,: + 6

(G)
>★•,!

)
− (k>★•)=G , 9,: (A.53b)

Similarly the boundary values in ~ and I-direction are derived.

A.2.1.5 Treatment of expm1div

In Equation (A.47) the function

� (2) = exp(2) − 1

2
(A.54)

is introduced. For 2 → 0 the fraction � (2) goes to 1, which can be verified e.g. using the

rule of L’Hospital. To avoid numerical instabilities due to 0
0
, we approximate � (2) for small

values of 2 � 1 by its Taylor expansion

� (2) = 1 + G
2
+ G

2

6
+ G

3

24
+ O(G4). (A.55)

A.2.2 Computing the Electron Fluence using StaRMAP

In order to solve the %# -model using the method developed in Section A.2.1, we apply the

product rule to the first term of Equation (A.21)

− mn ((k ) = −mn(k − (mnk . (A.56)

The former term is combined with the transport coefficient C to form � = −mn( + C. Using

a pseudo-time variable C (n) = ninit − n the latter term in Equation (A.56) becomes

− (mnk = −( mC
mn
mCk = (mCk . (A.57)

For the %# -model the source term in StaRMAP is set to zero & = 0. Boundary conditions

for the %# model are given in Equation (A.30) and comply with the definition of StaRMAP’s

generic moment Equation (A.33). Hence, " (=)
4,> = !

(=)
> �

(=)
4,> .

These transformations allow us to define the partial differential equation which is solved

to compute the moments of the electron fluence.

−(mnk +� (G) mGk +� (~) m~k +� (I) mIk + (−mn( + C)k = 0 ∀n ∈ [ncut, ninit], G ∈ S

k (n = ninit, G) = 0 ∀G ∈ S

k>,= (n, G) = ! (=)> �
(=)
>,4 k4,= (n, G) + 6>,= (n, G) ∀n ∈ [ncut, ninit], G ∈ mS.

(A.58)

Additionally, we define an operator which computes one step of the %# -equation using

the discretization introduced in Section A.2.1

k8+1 = k (n=n−8 ) = %8→8+1
# (k8 , d). (A.59)
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The %# -equation is solved ”backwards” in energy, hence the definition of the (8 + 1)th so-

lution k8+1 = kn=n −8 , where =n is the number of energy steps, n1 = ncut the smallest (cutoff)

energy and n=n = ninit the highest (initial) energy. The operator %8→8+1
#

approximates the

material properties ( and � at the intermediate energy n8+n8+1
2

using the mass concentrations

d, computes boundary values as described in Equation (A.53) and performs an update of

the moments k using Strang Splitting as defined in Equation (A.50).

A.2.3 Numerical Integration: Ionization Distribution

For the integration (Equation (A.10)) in energy we apply the trapezoidal rule

∫ ninit

ncut

f (/,9) (n)k0
0 (n, G) dn ≈

=n−1∑
8=1

Δn8
f (/,9) (n8+1)k0

0 (n8+1, G) + f (/,9) (n8 )k0
0 (n8 , G)

2
, (A.60)

where Δn8 = n8+1−n8 . For an implementation, which can be performed analogously to the time

stepping of the %# -equation using StaRMAP without storing the solution at the previous

time step, we can rewrite the sum to

Δn1f (/,9) (n1)k0
0 (n1, G)

2
+
=n−1∑
8=2

(
Δn8−1 + Δn8

2
f (/,9) (n8 )k (n8 , G)

)
+
Δn=nf (/,9) (n=n )k0

0 (n=n , G)
2

. (A.61)

A.2.4 Numerical Integration: Mass Attenuation

The x-ray generation distribution X(/,9) is like the solution k0
0 discretized on the grid �444 .

For each spatial coordinate G8, 9,: ∈ �444 , we approximate the attenuation factor using the

trapezoidal rule for the line integral in Equation (A.7)

exp(−
∫
3 (G)

` (/,9) (Ī) dĪ) ≈ exp
©«
−

∑
Ī< ∈3̄ (G)

t<` (/,9) (Ī<)ΔĪ
ª®¬
, (A.62)

where 3̄ (G) = {Ī< |< = 1, . . . , =A} is a discretization of the path 3 (G) into =A points with

distance ΔĪ and t8 = 1 − 1
2
(X8,1 + X1,=A ) the factor for the trapezoidal rule. Then the formula

for the approximation of the detector intensity is

I(/,9) = A (/,9) ≈
∑

G ∈�444

exp
©«
−

∑
Ī< ∈3̄ (G)

t<` (/,9) (Ī<)ΔĪ
ª®¬
X(/,9) (G)vol(ΔG), (A.63)

where vol(ΔG) is the spatial integration volume.
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A.3 Parametrization of the Material

As discussed in Section 2.2 the particular choice of a model of mass concentrations d is

problem dependent and should be conducted with great care and a particular material in

mind.

In this section we provide models for mass concentrations which are utilized to conduct

the reconstruction experiments in Section B.3. Thereby we distinguish between mass concen-

tration models (Section A.3.1) and parametrizations (Section A.3.3). The former is the rela-

tion of mass concentrations with other physical quantities and the latter is the parametriza-

tion of a function in 3D. Combining a mass concentration model with a parametrization

yields the relation

d (G ; ?) : R
3 × R

=? → R
=4 , (A.64)

a parametrization of the function d (G) which returns mass concentrations of =4 elements

given a position G inside the material and =? parameters, which describe the material.

A.3.1 Relations of Mass Concentrations

Recall the definition of mass concentrations from Section A.1.1. We drop the dependency

·(G) because all following quantities refer to the point G , respectively the volume 3G .

A.3.1.1 Relation To Mass Fractions

The mass fraction l8 =
"8

"tot
of an element 8 in a compound is defined as the ration between

partial mass "8 and total mass "tot. We assume, that the compound has been formed in

a volume-preserving manner (the volume of the compound is the sum of volumes of pure

constituents). The assumption gives + =
∑=4
8=1

"8

d
pure

8
, where d

pure

8 is the density of pure

constituents, and we find

d8 =
"8

+
=

"8∑=4
8=1+

pure
=

"8

"tot

∑=4
9=1

l8

d
pure

9

= l8

(
=4∑
9=1

l 9

d
pure

9

)−1
. (A.65)

A relation between mass concentrations d8 and mass fractions l8 .

A.3.1.2 Relation To Volume Fractions

The volume fraction i8 =
+8
+

of element 8 in a compound is defined by the ration between

partial volume +8 and total volume +tot. If the density of element 8 in the compound is the

same as if the constituent 8 would be pure "8

+8
= d

pure

8 , we can derive the following relation of

volume fractions i8 and mass concentrations d8 . Inserting the assumption into the definition

of mass concentrations Equation (A.2) yields

d8 =
"8

+
=
+8d

pure

8

+
= i8d

pure

8 . (A.66)

A.3.1.3 Relation To a Linear Density Model

We assume that the density of the compound can be modeled by linear combination of

densities of pure constituents dtot =
∑=4
8=1 W8d

pure

8 , and that the mass concentrations are the
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W8th fraction of the total density. Combined this gives a quadratic relation between W8 and

d8

d8 = W8dtot = W8

=4∑
9=1

W 9d
pure

9 . (A.67)

A.3.1.4 Additional Constraints of Mass Concentration Models

By their definition in Equation (A.2), the mass concentrations are constrained by

dtot =

=4∑
8=1

d8 . (A.68)

However, the total density dtot might not be known or might vary inside the material, thus

the constraint cannot be used in practice. Assuming a model for the mass concentrations,

the constraint is inherited to mass fractions and volume fractions, which can be constrained

by
∑=4
8=1{l,i,W}8 = 1. Hence, the additional assumptions allow us to reduce the parameter

space by enforcing

0 ≤ {l,i,W}8
=4−1∑
8=1

{l,i,W}8 ≤ 1

{l,i,W}=4 = 1 −
=4−1∑
8=1

{l,i,W}8 .
(A.69)

The parameter of the last element {l,i,W}=4 can always be computed from the previous

ones.

A.3.2 Comparison of Modeled Mass Concentrations

In Figure A.4 the mass concentration models are compared for a binary material consisting

of lead (dpure
%1

= 11.34g cm−3) and silicon (dpure
(8

= 2.329g cm−3). For each of the three

models, we vary the parameter for lead {l,i,W}%1 while the parameter for silicon is given

by {l,i,W}(8 = 1 − {l,i,W}%1 . We observe equivalence in the prediction of the total density

using the volume fraction and the linear density model, however, the mass concentrations

differ in all models. A general statement about quality for a particular model lies beyond

our knowledge and is probably material dependent.

From the mathematical perspective the choice of a proper material model does have an

impact on the invertibility (see Section B.3.1)

A.3.3 Parametrizations

In this section we propose some parametrizations for the discretization of a multivariate

3D function. Although we visualize the concepts only in 2D, the extension to 3D or the

reduction to 1D is straightforward. We denote the parametrized function with % (G ; ?) :

R3 × R=? → R=> and its parameters with ? ∈ R=? . We denote the number of output values

of the parametrization % with => . For the sake of comparability, we precisely formulate the

number of required parameters =? for each parametrization.
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Figure A.4: Mass concentrations d8 and total density dtot of a compound consisting of lead %1 and

silicon (8, derived from mass fraction l8 , volume fractions i8 and W8 .

A.3.3.1 Piecewise-Constant Parametrization

Assume that the reconstruction domain is split into several cuboids(3D)/ rectangles(2D)

(see Figure A.5), with aligned interfaces in all dimensions. We specify a rectangular box by

B8, 9,: = {(G,~, I) ∈ R
3 |G8 < G ≤ G8+1, ~ 9 < ~ ≤ ~ 9+1, I: < I ≤ I:+1}, (A.70)

where the interfaces are given by {G8 }8=1,...,=G , {~ 9 } 9=1,...,=~ and {I: }:=1,...,=I with =G , =~ and

=I the number of interfaces in each dimension. Based on the subsets, we define the 3D

piecewise-constant parametrization by

% (G ; ?) =


?8, 9,: G ∈ B8, 9,:
?out else

. (A.71)

In each of the boxes B8, 9,: the parametrization % is constant with a value defined by the

parameters ?8, 9,: . If G happens to lie outside all the boxes, we assign ?out. The number of

parameters is given by

=? = ((=G − 1) (=~ − 1) (=I − 1) + 1)=> . (A.72)

Because ?out counts as an additional ”box”, we add 1. Note that the positions of the

interfaces G8 , ~ 9 and I: are fixed and not part of the parameters.

A.3.3.2 Linear Parametrization

The linear parametrization is also based in the splitting of the reconstruction domain into

several boxes (see Figure A.5). But instead of specifying the value of % inside each box, we

specify the value of % on the vertices of the boxes. We define the linear interpolation by

% (G, ?) =


I(G ; ?8, 9,: , ?8+1, 9, 9 , ?8, 9+1,: , . . . , ?8+1, 9+1,:+1) G ∈ B8, 9,:
I(G ; ?out) 4;B4

(A.73)

where I denotes 3D linear interpolation of the values on the vertices.

We visualize the linear interpolation in 2D in Figure A.6 and derive the interpolation

formula. Given a point (G,~) which is inside the Rectangle {(G,~) |G- ≤ G < G+, ~- ≤ ~ < ~+},
we derive interpolation weights [G and [~

[G =
3G

�G
=
G − G-
G+ − G-

[~ =
3~

�~
=
~ − ~-
~+ − ~-

. (A.74)

27



Chapter A. The Forward Problem

~1

G1 G3

~2

~3

G2

B1,1 / ?1,1 B2,1 / ?2,1

B1,2 / ?1,2 B2,2 / ?2,2

�G1 �G2

�~1

�~2

Figure A.5: 2D sketch of the piecewise-constant parametrization. Interfaces of the boxes B8, 9 are
defined by G8 and ~ 9 . The boxes are not required to be equally sized and their side

lengths are defined by �G8 and �~8 . Inside each box B8, 9 the function value is constant

% (G ∈ B8, 9 ) = ?8, 9 .

×
(G-, ~-)

×
(G+, ~-)

×
(G+, ~+)×

(G-, ~+)

×G

3~

3G

�G

�~

Figure A.6: 2D sketch of linear parametrization inside a box with vertices (G-, ~-), (G+, ~-), (G+, ~+)
and (G-, ~+). Distances of G from the interfaces are denoted with 3G resp. 3~ and the

side lengths of the box with �G and �~.

Based on the parameters defined on the vertices ?--, ?+-, ?-+ and ?++ the interpolation is

given by

I(G ; ?--, ?+-, ?-+, ?++) =(1 − [G ) (1 − [~)?--
+ [G (1 − [~)?+-
+ (1 − [G )[~?-+
+ [G[~?++.

(A.75)

A linear interpolation using =G , =~ and =I interfaces has

=? = (=G=~=I + 1)=> (A.76)

parameters. We add 1 if we additionally specify a value for points outside all interfaces.
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A.3.3.3 Neural Network Parametrization

The previous parametrizations are characterized by a predefined geometry, which limits their

approximation capabilities when trying to represent a general function. The only possibility

to increase their flexibility is by increasing the number of boxes in each dimension, which

simultaneously increases the number of parameters (in 3D: cubed).

Another possible function parametrization is based on neural networks [Bishop, 2006;

Goodfellow et al., 2016]. The parameters in a neural network simultaneously parametrize

the geometry of the function and the function value. Neural networks are universal function

approximators [Leshno et al., 1993; Iserles, 1999], hence if the number of parameters is large

enough, they are able to precisely approximate any continuous function. The same statement

holds for the piecewise-constant parametrization as well as for the linear parametrization,

however, neural networks are applied in a wide variety of applications and have proven to

be suitable for diverse tasks.

The basic structure of feed-forward neural networks consists of multiple layers :, with a

defined number of inputs G: ∈ R=
:
in and number of outputs I: ∈ R=

:
out for each layer. A dense

layer is defined by the mapping

I: = f: (, :G: + 1: ), (A.77)

where f: is an activation function, , : ∈ R=
:
out×=:in and 1: ∈ R=

:
out are the weights and bias

of layer :. The layers are connected by G:+1 = I: ; the output of layer : is the input of layer

: + 1. This defines the condition, that the number of outputs of layer : and the number of

inputs of layer : +1 has to coincide, =:out = =
:+1
in

. Common choices for the activation function

are f: ∈ {tanh,ReLU, sigmoid, id, . . .}.
For our use case of neural networks, two further assumptions on the dimensions of the

layers are necessary. The number of inputs is given by the number of spatial dimensions

=1
in

= 3 and the number of outputs is specified by the number of considered constituents of

the material.

Per layer the neural network has =:? = =:
in
=:out +=:out parameters, therefore the number of

parameters is

=? =

∑
:

=:in=
:
out + =:out. (A.78)

We describe two additional layers, which we used during our analysis.

Softmax layer The softmax layer is often used to interpret its outputs as probabilities,

because it assures that
∑
9 I 9 = 1. The layer does not introduce any new parameters and is

given by

I8 =
exp(G8 )∑
9 exp(G 9 )

. (A.79)

In the context of a material parametrization, we can use a softmax layer to automatically

guarantee compliance to the constraints derived in Section A.3.1.4.

Normalization Layer Algorithms for neural networks are usually designed to operate

with normalized inputs and outputs. If we analyze function variations on the nm scale in

the inputs a proper scaling is necessary. We transformed the spatial input variables to have
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zero-mean and a variance of one. This can be implemented by a linear transformation (a

dense layer with id activation function, but with fixed parameters) which transforms S to

(−1, 1)3.

For the numerical results of the forward model in Section A.4 and the reconstruction

experiments in Section B.3 the parametrizations are reduced to 2D or 1D equivalents. In

Section C.2 we describe an extension of the neural network parametrization which specifically

models an elliptical material structure.
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(a) (�4,  − !2), 20keV (b) ((8,  −"2), 10keV

(c) (�D, !1 −"2), 10keV (d) (�0, !1 −"2), 5keV

Figure A.7: Comparison of q (dI) curves computed using the presented method (blue, PN) to clas-

sical models (colored, XPP, CitZAF, XPhi and Riveros). The ionization distribution

q (/,9) in homogeneous materials is compared for multiple x-rays using different beam

energies ((�4,  − !2) `n = 20keV; ((8,  −"2) `n = 10keV; (�D, !1 −"2) `n = 10keV;

and (�0, !1 −"2) `n = 5keV). The underlying electron fluence is approximated using

the %21 model.

A.4 Numerical Experiments - Forward Model

A.4.1 Comparison: Ionization Distribution with Classical Phi-

Rho-Z Models as Reference

We compare the ionization distribution q (/,9) for homogeneous materials computed using the

presented method to classical analytical q (dI) models as reference. We compare against the

XPP [Pouchou and Pichoir, 1991], CitZAF [Heinrich and Newbury, 1991], XPhi [Llovet and

Merlet, 2010] and Riveros [Riveros and Castellano, 1993] models, which are implemented

in the library NeXLCoreMatrixCorrection.jl [Ritchie, 2021b]. Classical q (dI) models de-

scribe the ionization distribution q over the mass depth dI, where d is the density of the

material and I is the spatial coordinate for depth. The other spatial dimensions G and ~ are

neglected. Hence, it is sufficient to employ a reduced form of the developed 3D %# model

where only the depth is considered. The spatial domain S = (−1000nm, 0nm) is discretized
on 200 grid nodes in depth (G-direction in our model). We compare the ionization distribu-

tion q (/,9) for multiple beam energies `n with standard deviation fn = 0.1keV. The spatial
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and directional distribution of the beam does not influence the reduced 1D %# model. We

choose ninit = `n + 1keV and ncut = min(/,9) n
edge

(/,9) − 0.1keV, such that the beam is sufficiently

captured and the minimal edge energy of all x-rays is included. The edge energy nedge is the

minimal energy where electrons are able to ionize / atoms. We define materials which are

homogeneous in depth and only consist of a single element / . Hence, the mass concentration

in the whole material is constant d/ (G) = d
pure

/
. In Figure A.7 we present comparisons of

the q (/,9) (G)-curves for multiple materials and x-rays. Although our model tends to have a

slightly smaller ionization depth for all illustrated curves, the agreement is satisfactory.

A.4.2 Showcase: 1D Electron Fluence and Ionization Distribu-

tion for Layered Coatings

We showcase the capability of the presented model to compute the electron fluence k0
0 (n, G)

and the ionization distributions q (/,9) (G) for a more complex material. In depth the material

consists of multiple layers of homogeneous copper �D and Aluminum �; that are of variable

thickness. Beginning from the surface: a 50nm�D-layer, a 150nm �;-layer, a 200nm�D-layer,

a 300nm �;-layer succeeded by �D.

We investigate two different electron beam energies, 15keV and 10keV, both with a

variance of fn = 0.2keV. Again, the spatial and directional distribution of the beam is

not required, because we only consider the 1D %# model. The computational domain for

both experiments is S = (−1000nm, 0nm) and the considered energies are [ncut, ninit] =

[1keV, 15.5keV].
For comparison of different approximation qualities using a different number of moments

%# , we approximate the moments of the electron fluence using %3, %9 and %21. In Figure A.8

the zeroth moment of the electron fluence k0
0 (n, G) is plotted over the depth G for the 15keV

beam (Figure A.8a) and the 10keV beam (Figure A.8a). Blue (%3), orange (%9) and black

(%21) lines differentiate between the moment order of the underlying expansion. Additionally,

the material interfaces are indicated (by gray vertical lines) and labeled. The high order

approximations %9 and %21 coincide, but differences in the electron fluence for %3 are clearly

visible. Especially in the vicinity of interfaces, where the low order moment approximation

(blue %3) shows oscillating behavior.

The differences for the beam energies are obvious. Because of the smaller energy, the

zeroth moment of the electron fluence k0
0 for the 10keV beam decays closer to the surface,

while k0
0 for the 15keV beam reaches deeper layers of the material.

In Figure A.9 we present normalized ionization distribution curves which are computed

by integration of the presented electron fluence in energy (c.f. Equation (A.10)). Note

that the ionization distribution q is the probability of ionization if a respective atom would

be present at the given location, hence e.g. the ionization probability q (/,9) for the x-ray

characteristic to an element / can be non-zero in a layer even if / is not present in that layer.

We collect curves for the (�;,  − !2) and the (�D,  − !2) x-rays for both beam energies.

Ionization curves drawn in dashed lines base on the %3 electron fluence approximation while

solid lines base on the more precise %21 approximation. The %9 ionization curve coincides

with the %21 curve and is visualized by black dots. The interfaces as well as the beam energies

(indicated by vertical dotted lines) show an undeniable effect on the ionization distribution.

While for the high energy beam, �; atoms would be ionized in the first five layers, the low
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(a) k0
0
for an electron beam of 15keV. (b) k0

0
for an electron beam of 10keV.

Figure A.8: The zeroth moment of the electron fluence k0
0
(n, G) in a material, which consists of

multiple �D and �; layers in depth. The electron fluence is computed using three

spherical harmonic expansion orders, %3, %9 and %21, and is plotted for all at multiple

energies n. The simulation is conducted for two different beam energies. The curves

of %9 and %21 coincide, hence the orange (%9) curve overlaps the black (%21) curves.

Note the varying energy values n for each plot.

energy beam only ionizes the first three layers. Ionization of �D atoms using the low energy

beam is almost impossible, because the beam energy `n is only marginally higher than the

edge energy of �D.

Note that in comparison to the classical q (dI) curves for materials with thin layers, our

ionization distribution for layered materials does not base on the sophisticated concatenation

of q (dI) curves of homogeneous materials [Pouchou and Pichoir, 1991]. Our ionization

distribution solely depends on the underlying approximation of the electron fluence k0
0 .

A.4.3 Showcase: 2D Electron Fluence and Ionization Distribu-

tion for a Copper-Silicon Material

We showcase the 2D computation of the electron fluence and the ionization distribution for a

material consisting of copper �D and silicon (8. In Figure A.10 the structure of the material

is visualized. The computational domain S = (−500nm, 0nm) × (−300nm, 300nm) is split

at ~ = 0nm into a left and a right section. In depth (G) each section consists of a surface

layer of 100nm and a substrate. The homogeneous �D and (8 structure in each section of

the material is reversed.

The beam hits the material at `G = (0nm, 0nm) (with standard deviation fG = 30nm) into

negative G direction (with concentration coefficient ^ = 10) and has an energy of `n = 15keV

(with standard deviation fn = 0.2keV). The 2D computational domain S is discretized by

150 × 150 spatial coordinates and for the energy interval we choose [15.5keV, 1.0keV].
In Figure A.11 we compare the zeroth moment of the electron fluence k0

0 for multiple

electron energies and different %# expansion orders (%3, %9 and %21). For a low order approx-

imation (%3) artifacts of the method are clearly visible. Especially at material interfaces,

the method tends to produce oscillations and even computes negative values for the electron

fluence. In the presented plots, the color value is computed by clipping negative values to

zero. Increasing the order of the moment approximation, decreases the pronouncedness of

the artifacts.
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Figure A.9: The ionization distribution q for (�;,  −!2) and (�D,  −!2) in a 1D material which is

layered in depth. q is based on the electron fluence computed from two beam energies

15keV and 10keV as well as three moment approximation orders %3, %9 and %21. The

curves of %9 and %21 coincide, hence the %9 curves are visualized by black dots.

Figure A.10: The material structure used to showcase the 2D electron fluence and ionization dis-

tribution. The material is layered in depth G and width ~ with an alternating pattern

of �D and (8. The color values represent the density d (G) of the material in [g cm−3].
Note that (8 is less dense than �D, hence the interfaces influence the electron trans-

port significantly.
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Figure A.11: The zeroth moment of the 2D electron fluence k0
0
computed using a different number

of moments %# ∈ {%21, %9, %3}. The domain is discretized in 150× 150 spatial coordi-

nates. The beam is centered at ~ = 0nm, fG = 30nm with energy 15keV, fn = 0.2keV

in negative G-direction (−1, 0), ^ = 10.
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Figure A.12: The ionization distribution q for (�D,  −!2) and ((8,  −!2). The underlying electron

fluence is computed using multiple %# models (c.f. Figure A.11). Note that the

ionization distribution is the probability of ionization assuming that the respective

atoms are present, hence e.g. q (�D, −!2) is nonzero even if d�D (G) = 0.

In Figure A.12 we illustrate the ionization distribution fields q (G) for the x-rays (�D,  −
!2) and ((8,  −!2), based on the approximations of the electron fluence using the %# -model.

Due to the integration in Equation (A.10), the artifacts of the low order approximation

%3 are smoothed and no longer visible. Still, the ionization distribution based on the %3

approximation differs from the higher order approximations %9 and %21.

A.4.4 Showcase: 3D Electron Fluence

We showcase the 3D computation of the electron fluence for a material consisting of copper

�D and nickel #8. The structure of the material is similar to the previous showcase (100nm

surface layer), but with 2 additional sections in I-direction. The computational domain is

S = (−300nm, 0) × (−200nm, 200nm) × (−200nm, 200nm), thus smaller than in the previous

section, because copper and nickel have a higher density than silicon, hence a smaller inter-

action volume. The beam setup is: `G = (0nm, 0nm), fG = 10nm, `n = 12keV, fn = 0.3keV,

`Ω = [−1, 0, 0], ^ = 10. We discretize the spatial domain in 50 × 50 × 50 spatial coordinates

and choose [12.5keV, 8.3keV] as the energy interval.

In Figure A.13 the zeroth moment of the electron fluence k0
0 is visualized for multiple

electron energies {12, 11, 10, 9}keV. Note that the densities of copper and nickel are very

similar, hence changes in stopping power and transport coefficient at the material interfaces

are marginal and no difference in the electron fluence is visible.
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Figure A.13: The zeroth moment of the 3D electron fluence k0
0
computed using %9 in a material

consisting of copper �D and nickel #8. The domain is discretized in 50 × 50 × 50

spatial coordinates. The beam is centered at (I,~) = (0nm, 0nm), fG = 10nm with

energy n = 12keV, fn = 0.3keV in negative G-direction [−1, 0, 0], ^ = 50.
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The Inverse Problem

In Chapter A we developed and discussed a model that is able to predict k-ratios for complex

material samples. At all times we assumed the material to be given. However, the actual

challenge in EPMA is the unveiling of the material from given k-ratio measurements. The

remainder of this thesis (Chapter B) deals with the inverse problem, the reconstruction of

the material; specifically with the generic computation of gradients through the forward

model presented in Chapter A. The generic computation of gradients means:

• we allow arbitrary (differentiable) computations on top of the modeled k-ratios; we

remain generic in the objective function;

• we allow arbitrary (differentiable) computations below mass concentrations; we remain

generic in the parametrization of the material.

Chapter B is divided in Sections B.1 to B.3. In Section B.1 we build on the ideas from

Section 2 and further motivate the aim of remaining general. Section B.2 then details on

the applied methods and concepts to achieve this generality. We conclude Chapter B with

a validation of the implemented method and reconstruction experiments.
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B.1 Reconstruction as an Optimization Problem

The formulation of the reconstruction as an optimization problem mainly consists of the

following steps: The definition of the parameters ? which are searched for, the definition of

the forward model : (?) and the definition of the objective

disc(: (?), :exp) (B.1)

as some measure of discrepancy between modeled : (?) and measured :exp k-ratios. The

reconstruction result is then the set of parameters ?∗ for which the modeled k-ratios have

the smallest discrepancy from the measured k-ratios.

?∗ = argmin
?

disc(: (?), :exp) (B.2)

Usually the discrepancy disc(·, ·) denotes a norm, therefore disc(·, ·) ≥ 0. However, we cannot

expect to find ?∗ such that disc(: (?∗), :exp) = 0 in a real reconstruction problem, because of

imperfect modeling and the presence of noise.

Classical reconstruction approaches, e.g. matrix correction methods for homogeneous

materials or layered specimen based on q (dI) curves, define homogeneous mass concentra-

tions or the mass thickness of layers as the parameters ?. The k-ratio model either bases on

multiplicative correction factors or the integration of q (dI) curves. The discrepancy disc(·, ·)
is defined as the squared error of modeled and measured k-ratios

disc(: (?), :exp) =
∑
(/,9)

(: (/,9) (?) − :exp(/,9) )
2. (B.3)

The use of the squared error as the objective function is not limited to matrix correction

methods and can be used analogously with our model.

Defining the squared error as the objective function is very common, but may feel arbi-

trary. Inverse problem theory justifies the choice of the squared error function by deriving

it from statistical assumptions [Tarantola, 2005]. The assumptions simultaneously allow a

statistical interpretation of the reconstruction result ?∗.

In Section 2.1, we mentioned the approximation of maximum likelihood (ML) and max-

imum posterior estimates (MAP). The maximum likelihood estimate ?∗ is

?∗ = argmax
?

c (:exp |?), (B.4)

the maximum of the probability density function of the likelihood (Equation (4)). Analo-

gously we can write

?∗ = argmin
?

−c (:exp |?)︸        ︷︷        ︸
=disc(: (?),:exp)

, (B.5)

and define a discrepancy function. The maximum posterior estimate can be found similarly

by defining

disc(: (?), :exp) = −c (? |:exp) ∝ −c (:exp |?)c (?), (B.6)

where c (? |:exp) is the pdf of the posterior, which is proportional to the product of the

likelihood pdf and the prior pdf c (?).
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In the special case of a Gaussian likelihood and a Gaussian prior, the problem to find

the maximum posterior can be written as

?∗ = argmin
?

| |: (?) − :exp | |2
Σ
−1
!

+ ||? − `? | |2Σ−1
%

, (B.7)

where Σ! and Σ% are the covariance matrices of likelihood and prior and `% the mean of the

prior. With | |G | |2� = G)�G we denote weighted least squares. The special case of the maxi-

mum posterior approximation with Gaussian probabilities (Equation (B.7)) is also known as

Tikhonov regularization, a well studied regularization technique [Benning and Burger, 2018].

When neglecting the regularization term | |? − `? | |2
Σ
−1
%

and choosing an isotropic covariance

Σ! = f2
! � , Equation (B.7) is equivalent to minizing the squared error (Equation (B.3)).

A justification of the Gaussian assumptions or the definition of a proper likelihood and

prior is beyond the scope of this work, because it requires a detailed uncertainty quantifi-

cation of modeling errors and measurement noise. Furthermore, it is unclear if a general

definition of the objective function for reconstruction in EPMA is possible, because the

inverse problem is so multifaceted (c.f. Section 2). Therefore, we remain generic in the

definition of the objective in this work.

B.1.1 Measuring Reconstruction Quality

Assume that for some objective function 5 (?) = disc(: (?), :exp) the minimum ?∗ has been

unveiled. (The process of unveiling ?∗ is the focus of Section B.1.2 et seq.) We might ask

the question: How good is the reconstruction ?

Value of the Objective An obvious measure for the reconstruction quality is the value

of the objective 5 (?∗). The reconstruction result ?∗ was found by minimizing the value of

5 , so the smaller the objective, the better the model reproduces the measurements and the

better ?∗ represents the actual material.

In many simple inverse problems, the value of the objective is an unambiguous quality

measure for the result. However, consider the case where a model cannot represent certain

features which are present in the measurements, but can to some extent counteract for the

missing features by over- or underestimation in its parameters. The value of objective 5

would be smaller, but the reconstruction result would be worse.

In machine learning this effect is called underfitting [Goodfellow et al., 2016] and several

strategies to detect underfitting are investigated. Also the opposite effect, overfitting, where

a model is able to represent too many features of the measurements has to be taken care of.

Additional Measurements The disadvantages of using the value of the objective func-

tion as a reconstruction quality measure arise from the fact, that ?∗ is computed by minimiz-

ing the value of the objective function. By utilizing additional measurements :exp+ , which are

not included in the discrepancy disc(: (?), :exp) used find ?∗, the discrepancy of the model

to the additional measurements does not suffer from over- or underfitting. Hence, a quality

measure which is applicable in a practical reconstruction problem, is

disc(:+ (?∗), :exp+ ). (B.8)
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An analog to the additional measurements :exp+ in machine learning is the test data set

and the error (Equation (B.8)) is usually referred to as the test error.

Material Error A natural measure for the reconstruction quality is

| | d (G ; ?∗) − dtrue (G) | |!2 (S) , (B.9)

where d (G ; ?∗) are mass concentrations of the reconstructed material and dtrue are mass

concentrations of the true material. We interpret the mass concentrations as a general way

to describe materials (c.f. Section A.1.1), and also interpret their difference (in the sense of

the !2-norm) as the difference of two materials. The material error is not suitable for a real

reconstruction problem, because the true mass concentrations dtrue (G) have to be known.

We can however utilize the material error in synthetic reconstruction problems, where the

measurements are simulated based on a known material.

Parametrization Constraints Recall the constraints defined for the mass concentration

models in Section A.3.1.4. If we derive mass concentrations based on one of those models,

the underlying quantity l8 , i8 or W8 has to fulfill the constraint to add up to 1. If we do not

strongly impose this constraint for the reconstruction result ?∗, its deviation from 1 can be

thought of a reconstruction quality measure

| |1 −
=4∑
8=1

{l,i,W}8 (G) | |!2 (S) . (B.10)

Note that this is also similarly applied for classical reconstruction techniques in EPMA.

B.1.2 Optimization Methods

Having defined the reconstruction problem as an optimization problem, in this section we

discuss iterative gradient-based methods, which solve optimization problems. With ? ∈ R=

we denote the vector of unknowns and with 5 : R= → R the objective function. Let 5 be

twice differentiable with respect to the parameters ? with the notation of ∇5 for its gradient

and � 5 for its Hessian.

All optimization methods considered in this section are of the following iterative form:

Given an initial guess of the parameters ?0 we update the current minimizer ?8 according to

?8+1 = ?8 + Δ?8 , (B.11)

until a convergence criterion is achieved (e.g. the objective 5 (?8 ) stays almost constant or

the gradient ∇5 (?8 ) is sufficiently small).

We derive the optimization methods from the Taylor expansion of 5 (?) around @ ∈ R=

5 (?) = 5 (@) + ∇5 (@)) (? − @) + 1

2
(? − @))� 5 (@) (? − @) + O(| |? − @ | |3) (B.12)

Inserting the update of the optimization routines (Equation (B.11)) into the Taylor expan-

sion, by replacing ? = ?8+1 and @ = ?8 yields

5 (?8+1) = 5 (?8 ) + ∇5 (?8 ))Δ?8 +
1

2
Δ?)8 � 5 (?8 )Δ?8︸                                               ︷︷                                               ︸

B) 2
?8
(Δ?8 )

+O(||Δ?8 | |3). (B.13)
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Thereby, ) 2
?8

is the second order Taylor polynomial of 5 around the current minimizer ?8 .

The approximation 5 (?8+1) = ) 2
?8
(Δ?8 ) is accurate, if the distance between ?8+1 and ?8 is

sufficiently small, | |Δ?8 | |3 � 1.

Gradient Descent Method The gradient descent method bases on two simple steps:

• find the (unit) direction 38 of steepest descent (| |38 | | = 1);

• find a suitable step length U8 > 0, such that the function decreases.

Then the update is given by

Δ?8 = U838 . (B.14)

To derive the direction of steepest descent 38 , we insert the update Δ?8 into the first

order Taylor expansion of 5

5 (?8+1) ≈ 5 (?8 ) + U8∇5 (?8 ))38 . (B.15)

Since U8 > 0, we seek 38 = argmin3∗∈R= ∇5 (?8 ))3∗ where 3∗ is a unit direction | |3∗ | | = 1.

In Nocedal and Wright [2006] the minimum is given by 38 =
−∇5 (?8 )
| |∇5 (?8 ) | | , the direction which

points opposite to the gradient ∇5 (?8 ).
Generally, the first order Taylor expansion only holds in a small neighborhood around the

value ?8 (if | |Δ?8 | |2 � 2), so to guarantee a decrease of the objective 5 , the step length U8 has

to be chosen properly. A decreasing step can be found using line search methods [Nocedal

and Wright, 2006], which guarantee that 5 (?8+1) < 5 (?8 ) and additionally guarantee that

the step size U8 is not too small.

The gradient descent method is straightforward to implement, but has disadvantages.

If the objective function has a strong curvature with respect to some parameters ? and a

weak curvature with respect to other parameters, the convergence of the method degrades.

Because all gradients are scaled by U8 the method will either converge very slowly for pa-

rameters of weak curvature or overshoot parameters of strong curvature. In Nocedal and

Wright [2006] this characteristic of the steepest descent method is quantified by the condition

number of the Hessian ^ (� 5 ) = _max (� 5 )
_min (� 5 ) (a measure for the different curvatures). If ^ ≈ 1

the function has similar curvatures with respect to all parameters, if ^ � 1 the curvatures

strongly vary. Like many inverse problems, we expect that our reconstruction problem is

more sensitive to certain parameters (close to the beam surface) than to others. A fact that

hinders the application of the gradient descent method for reconstruction in EPMA.

Momentum Method The idea of the momentum method can be summarized as follows:

we choose U8 such that parameters with average curvature converge, but together with the

gradient, we also add the previous update Δ?8−1 to the current update Δ?8 . Then, updates

for parameters where the curvature is weak, grow over the iterations, while updates for

parameters where the curvature is strong cancel with each iteration. Often the method is

motivated using a ball rolling down a hill: the ball is accelerated by a force into the direction

of steepest descent: −∇5 (G8 ), but already has a certain momentum Δ?8−1.

The update for the momentum method is given by

Δ?8 = −U8∇5 (?8 ) + V8Δ?8−1 (B.16)

where U8 and V8 are hyperparameter defining the contributions of the gradient and the

previous step to the current update.

42



Chapter B. The Inverse Problem

A special case of the momentum method with precisely defined parameters U8 and V8 is

the conjugate gradient method [Nocedal and Wright, 2006].

ADAM Recent developments in machine learning lead to the development of modern

optimization methods [Kingma and Ba, 2017]. A method, which is successfully applied in

many machine learning problems is ADAM (adaptive moment estimation), a method for

stochastic optimization. Since machine learning models often employ huge data sets, the

objective 5 is calculated using only a randomly chosen subset of the data for computational

feasibility reasons. Due to the random selection of data, the objective becomes a random

variable and the goal is to minimize the expected value E(5 (?)). The optimization method

ADAM approximates the low-order statistical moments of E(5 (?)) using running averages

<8 and E8 , which decay (with rates V1 and V2) over the iterations of the optimization.

In Kingma and Ba [2017] the method is defined by

Δ?8 = −U <̂8√
Ê8 + n

, (B.17)

where the moments <̂8 and Ê8 are given by

<̂8 =
<8

1 − V8
1

Ê8 =
E8

1 − V8
2

(B.18a) <C = V1<8−1 + (1 − V1)∇5 (?8 )
EC = V2E8−1 + (1 − V2)∇5 (?8 )2

. (B.18b)

Thereby ∇5 (?8 )2 is the elementwise square of the gradient. Initial guesses for the hy-

perparameters of the method V1, V2, U and n are given in Kingma and Ba [2017]. The step

length U can be derived from prior knowledge about possible ranges of the parameters.

Newton’s method The gradient descent method, the momentum method and ADAM

only require the gradient ∇5 (?8 ) of the objective function. In contrast, Newton’s method

is based on the second order Taylor polynomial ) 2
?8

and additionally requires the Hessian

� 5 (?8 ). The update for Newton’s method is derived by minimization of ) 2
?8
, respectively by

finding Δ?8 such that ∇) 2
?8
(Δ?8 ) = 0. We can derive

� 5 (?8 )Δ?8 = −∇5 (?8 ). (B.19)

If the Hessian � 5 (?8 ) is positive definite, the Newton step is given by

Δ?8 = −� 5 (?8 )−1∇5 (?8 ). (B.20)

For a convex quadratic function, Newton’s method requires only one step to unveil the opti-

mum, because 5 (?8+1) = ) 2
?8
(Δ?8 ). For general functions Newton’s method is only guaranteed

to converge, if the estimate ?8 is already in vicinity to the optimum, and the second order

approximation is sufficient.

However, the naive application of Newton’s method to a general objective 5 has disad-

vantages:

• If the Hessian is not invertible, the direction Δ?8 can not be computed.

• If the Hessian is not positive definite, the direction Δ?8 must not be a descent direction.
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• The computation of the Hessian � 5 (?8 ) is expensive.

To overcome these disadvantages, Quasi-Newton methods have been developed. Instead

of using the exact Hessian � 5 (?8 ), it is approximated from previously computed objective

values 5 (?8 ) and gradients ∇5 (?8 ). In Quasi-Newton methods the update Δ?8 is

Δ?8 = −�−18 ∇5 (?8 ) (B.21)

where �8 is an approximation of the Hessian at the 8-th step.

BFGS In the BFGS method [Nocedal and Wright, 2006] the update is defined as

Δ?8 = −U8�−18 ∇5 (?8 ) (B.22)

where �8 is the approximation of the Hessian. �8 is computed based on previous evaluations

of the gradient ∇5 (?8 ) and carefully defined, such that it satisfies conditions, e.g. that Δ?8

is a descent direction for the objective 5 . In Nocedal and Wright [2006] �: is defined as

�8+1 = �8 −
�8B8B

)
8 �8

B)8 �8B8
+
~8~

)
8

~8B8
(B.23)

where B8 = ?8+1 − ?8 and ~8 = ∇5 (?8+1) − ∇ 5 (?8 ). However, Equation (B.23) is not intended

to be implemented in this form, because it implicitly depends on the new minimizer ?8+1.

For an implementation of BFGS and a variant (L-BFGS) which is less memory consuming

we refer to Nocedal and Wright [2006]; Mogensen and Riseth [2018].

Common Optimizer Interface All presented iterative optimization methods rely on the

computation of the objective function 5 (·) and the computation of the gradient ∇5 (·). There
exist multiple packages in (e.g. Optim.jl [Mogensen and Riseth, 2018] or Flux.jl

[Innes, 2018b]) which implement optimization routines, all of which share the requirement

to provide implementations of 5 and its gradient ∇5 . The computation of the objective 5

is covered by Chapter A, hence for the remainder of this thesis in Chapter B, we will focus

on the systematic and generic computation of the gradient ∇5 .
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B.2 Algorithmic Differentiation and the Adjoint

State Method

B.2.1 Why Algorithmic Differentiation

In Section B.1.2 the application of gradient-based optimization methods to solve the min-

imization problem is motivated. All methods require the evaluation of gradients ∇5 (?).
While for simple analytical functions, the derivation of the gradient is straightforward, the

computation of the gradient for complex functions, e.g. the objective function used for the

minimization, is challenging. Special attention must be paid to the computation time, which

quickly grows to unmanageable orders of magnitude.

A naive approximation of the gradient can be computed using finite differences

(∇5 (?))8 =
5 (? + ℎ48 ) − 5 (?)

ℎ
, (B.24)

by successive perturbation of each parameter and approximation of the derivative by the

secant of the function 5 (?). But the application of finite differences involves multiple evalu-

ations of the forward function 5 (?) and therefore becomes computationally very expensive if

the number of parameters =? is large. Furthermore, it is unclear how to properly choose the

step length ℎ. An adaptive search for the step length, or the approximation of the derivative

using higher order finite differences increases the number of function evaluations even more.

Consider the case of a reconstruction problem with a material parametrization with =?

parameters. The objective function combines the discrepancy of k-ratios measured using

=U beam energies and positions. Then, even the computation of the forward problem is

expensive because the approximations of =U solutions of the %# -model are necessary. To

approximate the gradient of the objective function at least =?+1 computations of the forward

problem are required, hence the solution of =U (=? +1) solutions of the %# -model. Because of

the scaling with the number of parameters, a finite difference approximation of the gradient

is expensive.

Remedy for the problem of large computational cost is the application of adjoint methods

for the computation of the gradient. Adjoint methods scale with the number of outputs of

the considered function rather than with the number of inputs. For the objective function

used on optimization 5 (?) : R=? → R, this advantage is of specific interest, because the

output is a scalar. In theory, the cost to compute the gradient of an objective function ∇5
using adjoint methods is twice the cost of the computation 5 .

We distinguish between two kinds of adjoint methods, adjoint algorithmic differentiation

and the adjoint state method. The former being a mode of algorithmic differentiation, a

concept from computer science to compute derivatives of arbitrary program code. The latter

is a method from optimal control theory to compute derivatives of functionals constrained

by partial differential equations.

Algorithmic differentiation (AD) proposes to automatically derive derivatives for arbi-

trary program code. While the efficient application of AD to complex numerical codes is

challenging, it can conveniently be applied to smaller functions, which are called during the

execution of a complex numerical code. On the other hand, the adjoint state method is

applied to compute derivatives of functionals based on partial differential equation solvers.
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However, the naive implementation of the adjoint state method is specific to the objective

function and the material parametrization and does not allow a convenient replacement of

either.

We describe a combination of adjoint algorithmic differentiation and the adjoint state

method that allows the convenient extension and exchange of the objective function and

the material parametrization. Thereby we rely on the concepts of AD, but avoid the au-

tomatic application of AD to the full pde solver. The differentiation of additional material

parametrizations or objective functions can either be handled by an automatic AD tool, if

the generated adjoint version is performant enough, or by the definition of an additional

adjoint implementation of the respective parametrization or objective. The core of the

implementation remains unaffected.

B.2.2 Algorithmic Differentiation

Algorithmic differentiation [Naumann, 2011; Griewank, 2003] is a systematic way to compute

exact derivatives of numerical program code. There exist two fundamental modes of AD, the

tangent mode and the adjoint mode, both of which base on the chain rule of differentiation.

We motivate tangent and adjoint mode AD based on the chain rule and mention their differ-

ences. Afterwards we precisely define both modes using single assignment code, discuss their

implementation, justify our choice for the adjoint mode and demonstrate implementation

examples.

Differentiation Chain Rule Given a (differentiable) function 5 , which is the composition

of two other functions 6 and ℎ

5 = ℎ ◦ 6,6 : R → R, ℎ : R → R, G → ℎ(6(G)). (B.25)

Using the chain rule we can compute the derivative
m~

mG
as

m~

mG
= ℎ′(6(G))6′(G). (B.26)

Program code can be viewed as the (arbitrarily complex) composition of simple functions.

Hence, the derivative of an output value can be viewed as the (arbitrarily long) product of

derivatives of simple functions. The two modes of AD, tangent and adjoint, differ in the

way in which they compute the product of derivatives. The product is commutative, hence

it does not matter, whether we start multiplication at the end or in the beginning of the

product. While the tangent mode starts with inputs of the numerical code and computes

derivatives alongside the primal function evaluation, the adjoint mode begins at the outputs

(after the primal code is evaluated) and computes the derivative backwards. Thereby the

two modes differ in computational complexity and memory requirements. While for the

accumulation of a Jacobian of a function 5 : R= → R< the tangent mode scales with the

number of inputs =, the adjoint mode scales with the number of outputs <.

An efficient implementation of AD is challenging. While the tangent mode can be im-

plemented memory efficient (because it can be computed alongside the primal function)

the adjoint mode requires the storage of intermediate values. This quickly becomes too

memory-consuming and strategies to reduce the memory requirements are necessary.
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B.2.2.1 Single Assignment Code

For the definition of tangent and adjoint mode, consider a function 5 : R= → R<, G →
~, which is split up into individual single assignments i 9 by the introduction of scalar

intermediate variables E 9 ∈ R.

(E1, . . . , E=)) = G (B.27a)

E 9 = i 9 ((E; );≺ 9 ) (B.27b)

~ = (E |+ |−<, . . . , E |+ |)) , (B.27c)

Using tangents ¤E 9 ∈ R and adjoints Ē 9 ∈ R of the intermediate variables E 9 we can define

the two modes of AD as

¤E 9 =
∑
:≺ 9

mi 9 ((E; );≺ 9 )
mE:

¤E: (B.28a) Ē: =

∑
9�:

mi 9 ((E; );≺ 9 )
mE:

Ē 9 . (B.28b)

For the tangent ¤E 9 of the intermediate variable E 9 all tangents ¤E: which precede : ≺ 9

(all E: which on which E 9 directly depends on) are accumulated, multiplied by the respective

partial derivatives. For the adjoint Ē: of the intermediate variable E: all adjoints Ē: which

succeed 9 � : (all E 9 which directly depend on E:) are accumulated, multiplied by the

respective partial derivatives. To compute the partial derivative for both modes the values

of the primal intermediate variables (E; );≺ 9 are necessary.

A convenient way to visualize AD is the notion of a directed acyclic graph (DAG, also

computational graph). Every intermediate variable E 9 and its assignment function i 9 is

associated with a node and every partial derivative is associated with an edge. Then the

tangent ¤E 9 of a node E 9 is the sum over all incoming edges, while the adjoint Ē 9 of a node is

the sum over all outgoing edges.

An exemplary graph is drawn in Figure B.1. Thereby the input is (E1, E2)) = G , the output

is ~ = (E5, E6)) and E3 and E4 are intermediate variables. We visualize the edges (the partial

derivatives) which are necessary for the accumulation of the tangent ¤E3 =
mi3

mE1
¤E1 + mi3

mE2
¤E2

by dotted arrows and the edges which are necessary for the accumulation of the adjoint

Ē4 =
mi6

mE4
Ē6 + mi5

mE4
Ē5 by dashed arrows.

Short inspection unveils the fact, that the initialization/seeding of tangents of input

variables and the initialization/seeding of adjoints of output variables is necessary. Seeding

a unit vector to the tangents of the inputs, the tangents of the outputs hold the respective

column of the Jacobian of 5 . Analogously, seeding a unit vector to the adjoints of the

output, the adjoint of the inputs hold the respective row of the Jacobian. However, if 5 is

only a part of a larger computation, the tangents/adjoints of the inputs/outputs can also

be specified from the preceding/succeeding part of the computation.

The disassembly of large numerical functions into single assignments is academic, and

it is often sufficient to analyze functions on a higher level. The definition of tangents and

adjoints in Equation (B.28) can be extended to vector-valued intermediate variables E 9 by

¤E 9 =
∑
:≺ 9

(
mi 9 ((E; );≺ 9 )

mE:

)
¤E: (B.29a) Ē: =

∑
9�:

(
mi 9 ((E; );≺ 9 )

mE:

))
Ē 9 , (B.29b)
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E5 = i5 (E3, E4) E6 = i6 (E4)

E3 = i3 (E1, E2) E4 = i4 (E2)

E1 E2

mi3 (E1,E2)
mE1 mi3 (E1,E2)

mE2

mi4 (E2)
mE2

mi5 (E3,E4)
mE3 mi5 (E3,E4)

mE4

mi6 (E4)
mE4

Figure B.1: The directed acyclic graph (DAG) of a simple function with two inputs E1 and E2, two

intermediate variables E3 and E4 and two outputs E5 and E6. Arrows denote direct

dependencies of variables. The dotted arrows depict the tangent accumulation of ¤E3,
the dashed arrows the reversed accumulation of the adjoint Ē4.

Zygote.jl adjoint - source-to-source transformation [Innes, 2018a]

ReverseDiff.jl adjoint - operator overloading [Kelley, 2021]

ForwardDiff.jl tangent - operator overloading [Revels et al., 2016]

Table B.1: An excerpt of the rich world of implementations of AD in the programming language

julia, annotated with name, AD mode and implementation model. We mention the

libraries that were worked with mostly in the course of this work.

where
(
mi 9

mE:

)
· is the Jacobian-(for adjoints transposed Jacobian)-vector product.

Equation (B.28) and Equation (B.29) sum up the fundamental functionality of AD;

however, the efficient application is challenging and a field of open research [Naumann,

2011].

B.2.2.2 Implementations of Algorithmic Differentiation

The two modes of AD are usually implemented either by operator overloading or by source-

to-source transformation. In the former approach, operator-overloading, a dual number type

(the primal function value with its tangent or adjoint) is defined, and all primal functions

are overloaded such that they additionally perform the functionality required for tangent or

adjoint mode AD. For tangent mode that is the accumulation of tangents in the dual of the

output value, for adjoint mode the operation is usually recorded to a tape, which is reversed

for the adjoint accumulation.

The latter approach is a source-to-source transformation, where tangent and adjoint

functions are generated and implemented alongside the primal function code. This offers

the possibility of applying subsequent compiler optimizations. Table B.1 lists some imple-

mentations of AD in the programming language julia that were worked with in the course of

this work. Mostly we rely on Zygote.jl [Innes, 2018a] a source-to-source adjoint AD tool,

which we enhance by the custom definition of adjoint versions of our implemented functions.

We mention some technicalities of implementing adjoint mode AD, which we rely on

later:
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Accumulation of Adjoints If the primal code contains the subsequent execution of two

function (6 and ℎ) which depend on the same variable E , the adjoints are accumulated.

~ = 5 (E)
I = 6(E),

(B.30a)

Ē = ( m6(E)
mE

)) Ī

Ē += ( m5 (E)
mE

)) ~̄
(B.30b)

Linear Functions If the function to be differentiated is linear in an argument, its partial

derivative with respect to that argument is constant, and the adjoint code does not have to

memorize the primal function value to determine the derivative.

Checkpointing Adjoint AD has the disadvantage of having a high memory requirement.

The concept of checkpointing reduces the memory requirements by sacrificing a longer run-

time. Instead of storing all intermediate values during the forward pass, only the input

values of subfunctions are memorized. During the adjoint pass, the intermediate values

have to be recomputed from the stored input values. Checkpointing subsequently repeats

the forward pass for subfunctions and reverses them iteratively.

B.2.3 Examples of Adjoint Mode AD

B.2.3.1 Adjoint of the Mass Fraction Model in Zygote

Recall the relation between mass concentrations d and mass fractions l in Equation (A.65).

We might implement the equation using an intermediate variable ' (Equation (B.31a)).

Using the partial derivatives
md8
m'

= −'−2l8 , md8
ml8

= '−1 and m'
ml8

=
1

d
pure

8
we can derive the

adjoint version (Equation (B.31b)) of the relation.

' =

=4∑
9=1

l 9

d
pure

9

d8 = l8'
−1.

(B.31a)

'̄ = −'−2
=4∑
8=1

l8 d̄8

l̄8 = '
−1d̄8

l̄8 +=
1

d
pure

8

'̄

(B.31b)

The computation of the adjoint '̄ accumulates all adjoints from d̄8 , because during the

forward pass the same ' was used to compute every d8 . Due to the nonlinearity in ', the

value of ' is required for the partial derivative. In the forward pass, the mass fraction l8 is

used for the computation of ' and d8 , hence we accumulate its adjoints using +=. Note that

the order of the operations in the adjoint version is reversed regarding the primal function

evaluation, because adjoints of subsequent variables are required to compute adjoints of the

preceding variables.

An implementation of the forward Equation (B.31a) and adjoint Equation (B.31b) is

presented in Figure B.2 as a custom adjoint implementation following the library

Zygote.jl. If called outside the context of Zygote, the function mass concentrations(l)

only returns d. Otherwise, it additionally returns the adjoint function mass concentra-

tions adjoint(d adjoint), a closure (a function with enclosed data: l, d pure and R)
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@adjoint function mass_concentrations(l)
R = sum(l ./ d _pure)
d = l ./ R
function mass_concentrations_adjoint(d _adjoint)

R_adjoint = -dot(l, d _adjoint )/R^2
l_adjoint = d _adjoint ./ R
l_adjoint += R_adjoint ./ d _pure
return l_adjoint

end
return d , mass_concentrations_adjoint

end

Figure B.2: An implementation of the adjoint of the mass concentration model in the form of

custom adjoint definitions used by Zygote.jl. Given mass fractions l8 the forward

pass computes mass concentrations d as described in Equation (B.31a). The ad-

joint function defines a closure which encapsulates l and R from the forward pass

and computes the respective adjoints of the mass fractions l adjoint as described in

Equation (B.31b).

which for given adjoints of the output d adjoint, computes the adjoints of the inputs

l adjoint. After the evaluation of a forward pass, that includes a call to mass concen-

trations(l), Zygote reverses the forward pass and meanwhile calls our definition of the

adjoint function mass concentrations adjoint(d adjoint).

To apply checkpointing for this example, the adjoint closure mass concentrations ad-

joint of the function would not enclose the intermediate variable R, but recompute R =

sum(l ./ d pure) prior to the computation of R adjoint. Checkpointing would probably

not have a noticeable effect on the runtime here, but this example demonstrates the technique

which is applied in our implementation.

B.2.3.2 Adjoint of Weighted Least Squares with Regularization

Recall the equation for weighted least squares (Equation (B.7)). Here we derive the adjoint

version of a function which has the form Equation (B.32a) where for simplicity, we replaced

the residuum : (?) − :exp with 4, the normalization distance ? − `? with @ and the inverse

covariance matrices with � and �.

5 = 4)�4 + @)�@, (B.32a)

4̄ = (� +�) )4 5̄
�̄ = 44) 5̄

@̄ = (� + �) )@5̄
�̄ = @@) 5̄

(B.32b)

The adjoint version (Equation (B.32b)) can be derived from the partial derivatives
m5

m · .

If one of the matrices � or � is symmetric we can replace e.g. (� +�) ) by 2� and derive the

partial derivative m4)�4
m4

= 2�4.

Using Equation (B.32a) as the weighted least squares objective function, the adjoints

of the matrices � and � are usually not required, because the covariance matrices do not

depend on the optimized model parameters. Only 4 and @ depend on the model parameters

and the adjoints 4̄ and @̄ are required. We included the adjoints �̄ and �̄ for the sake of a

complete illustration.
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B.2.3.3 Adjoint of the Neural Network Parametrization

The adjoint version of the neural network parametrization, which we introduced in Sec-

tion A.3.3.3, is the computation of derivatives as part of the Backpropagation algorithm, a

method frequently applied in machine learning [Goodfellow et al., 2016; Bishop, 2006]. Here

we only denote the adjoint version of the computation of a dense layer, where the forward

computation can be implemented by Equation (B.33a).

~: =, :G: + 1:

I: = f: (~: )
(B.33a)

~̄: =

(
mf: (~: )
m~:

))
∗ Ī:

,̄ :
= ~̄:

(
G:

))
Ḡ: =

(
, :

))
~̄:

1̄: = ~̄:

(B.33b)

In its adjoint version (Equation (B.33b)), the ∗ denotes elementwise multiplication, other

products are matrix multiplications. The computation of derivatives of the whole network

is implemented by chaining the adjoint versions of each layer in reversed order.

B.2.4 The Adjoint State Method

Unlike algorithmic differentiation on the numerical level, the adjoint state method [Plessix,

2006] offers a way to derive derivatives of functions that include implicit relations of variables.

Bünger [2021]; Claus et al. [2021] already successfully apply the adjoint state equation to

compute gradients in the context of EPMA. In Ma et al. [2021] combinations of algorithmic

differentiation and the adjoint state method for time stepping schemes (mainly in the context

of ODEs) are discussed. Here we only present the steps of the derivation of the adjoint state

method, which are required to apply it to the %# -model and derive the adjoint formulation

of the %# operator. For a detailed derivation of the adjoint state method we refer to the

mentioned literature. In the next section (Section B.2.6) we discuss our implementation

which combines the adjoint state method with algorithmic differentiation.

Consider a function 5 : S → R where its input k ∈ S is implicitly defined by 6(d,k ) = 0

with d ∈ R=. In this section the variables d andk are defined in a general way, but foreshadow

their counterpart in the %# -model. We define the output of the function 5 (k ) as ~ ∈ R

~ = 5 (k ) | 6(d,k ) = 0, (B.34)

and seek the derivative of ~ with respect to d. The adjoint state method to compute the

derivative
m~

md
consists of three main steps:

• The computation of a realization k̂ of the implicit constraint 6(d, k̂ ) = 0, given d.

• The computation of the adjoint state variable _ using the adjoint state equation

m5

mk
+

[
m6

mk

]∗
_ = 0, (B.35)

where
[
m6

mk

]∗
is the adjoint of the derivative operator

[
m6

mk

]
. The adjoint operator is

defined as

〈_,
[
m6

mk

]
Xk 〉 = 〈

[
m6

mk

]∗
_, Xk 〉. (B.36)
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where Xk is a perturbation in k due to a perturbation Xd in d because of the relation

6(G + XG,k + Xk ) = 0.

• And the computation of the gradient

m~

md
=

m

md
〈_,6(d, k̂ )〉. (B.37)

The advantage of the adjoint state method is that it avoids the computation of
mk̂

md
. The

derivative of the realization k̂ with respect to the variable d could be approximated using e.g.

finite differences or sensitivity equations [Ma et al., 2021]. However, both methods scale with

the number of input parameters which hinders application to our problem. Additionally,
mk̂

md

is high-dimensional and its storage very memory-consuming. Avoiding the computation of
mk̂

md
saves long computing times and clearly motivates the use of the adjoint state method.

The computational costs of the adjoint method are:

• The computation of the realization k̂ is virtually free. To compute the value ~ of primal

function 5 (k ), a realization of the constraint k̂ is calculated anyway. The additional

cost of the adjoint state method is the storing of k̂ , because it is required later.

• The adjoint state equation (Equation (B.35)) is often similarly complex as the primal

equation. Only the adjoint source
m5

mk
must be added. Then the cost of solving the

adjoint state equation is comparable to the cost of solving the primal constraint 6(d,k ).
• The cost to compute Equation (B.37) depends on the relation of the constraint 6(d,k )
and d. If the relation is linear (as in our case c.f. Section B.2.6) Equation (B.37) can

be computed very efficiently.

Compared to finite differences or sensitivity equations, the main advantage of the adjoint

method is, that it does not scale in the number of inputs (the number of variables in d ∈ R=).

In case 5 (k ) is multivariate, the number of evaluations of Equation (B.35) would scale in the

number of outputs, if 5 (k ) is a scalar, one solution of the adjoint state equation is sufficient

to compute the whole gradient.

B.2.4.1 Adjoint Operator of the PN-model

The implicit relation (c.f. 6(d,k ) = 0 in Equation (B.34)) for the %# model is the governing

partial differential equation (Equation (A.21)). To derive the adjoint state equation of the

%# model, first the adjoint operator
[
m6

mk

]∗
must be deduced. Due to the linearity of the

partial differential equation 6(d,k ) in the moments k , we can write
[
m6

mk

]
Xk = 6(d, Xk ).

We derive the adjoint operator of
[
m6

mk

]
Xk using its definition in Equation (B.36). The

scalar product is the inner product in the function space !2, therefore given by integration

and multiplication 〈·, ·〉 =
∫ ninit

ncut

∫
S
·) · dG dn. Then we can derive the adjoint operator using

integration by parts. Additionally, we exploit the symmetry of the advection matrices � (=) =
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� (=)) .

〈_, m6
mk
Xk 〉

=

∫ ninit

ncut

∫
S

_) (−mn ((Xk ) +� (G) mGXk +� (~) m~Xk +� (I) mIXk + CXk ) dG dn

=

∫ ninit

ncut

∫
S

((mn_ −� (G) mG_ −� (~) m~_ −� (I) mI_ + C_︸                                                  ︷︷                                                  ︸
B

[
6
k

]∗
_

))Xk dG dn

+
∫ ninit

ncut

∫
S

−mn ((_)Xk ) + mG (_)� (G)Xk ) + m~ (_)� (~)Xk ) + mI (_)� (I)Xk ) dG dn
︸                                                                                                    ︷︷                                                                                                    ︸

B0

= 〈
[
m6

mk

]∗
_, Xk 〉

(B.38)

Together with the adjoint source
m5

mk
, the adjoint operator

[
m6

mk

]∗
_ form the partial differential

equation that governs the adjoint state variable _. The boundary integrals, which are set

to zero in Equation (B.38) yield boundary conditions for the adjoint state variable _. From

the first term [∫
S

−(_)Xk dG

]ninit
ncut

= 0, (B.39)

we derive an initial condition for the adjoint state variable _. At ninit the solution variable is

specified by its initial condition k (·, ninit) = k0 (·), hence no perturbation in the state variable

is implied Xk (ninit) = 0. For Equation (B.39) to hold, we must prescribe the adjoint state

variable _(·, ncut) = 0 at the energy ncut.

The remaining terms of the boundary integrals in Equation (B.38) require∫ ninit

ncut

_)� (=)Xk dn = 0 ∀G ∈ mS. (B.40)

From the boundary conditions of k in Equation (A.30), we derive a relation between odd

and even perturbations at the spatial boundary Xk>,= = !
(=)
> �

(=)
>,4 Xk

4,=. Defining the boundary

conditions of the adjoint state equation _ as _>,= = −! (=)> �
(=)
>,4 _

4,= we find that Equation (B.40)

holds.

_)� (=)Xk =

(
_4,=

_>,=

)) (
0 �

(=)
4,>

�
(=)
>,4 0

) (
Xk4,=

Xk>,=

)

= _)4,=�
(=)
4,> Xk>,= + _)>,=�

(=)
>,4 Xk4,=

= _)4,=�
(=)
4,> (! (=)> �

(=)
>,4 Xk4,=) − (! (=)> �

(=)
>,4 _4,=))� (=)

>,4 Xk4,=

= _)4,=�
(=)
4,> (! (=)> �

(=)
>,4 Xk4,=) − _)4,=�

(=))
>,4 !

(=))
> �

(=)
>,4 Xk4,= = 0.

(B.41)

Thereby we used the fact, that ! (=))> = !
(=)
> and that the blocks of � (=))

4,> = �
(=)
>,4 are symmet-

ric. Symmetry can be verified using the definition of both matrices (Equation (A.27) and

Equation (C.1)).

Combining the adjoint operator of the %# -equation (Equation (B.38)) with the initial
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and boundary conditions we arrive at the following problem for the adjoint state variable _.

(mn_ −� (G) mG_ −� (~) m~_ −� (I) mI_ + C_ = − m5
mk

∀n ∈ [ncut, ninit], G ∈ S

_(n = ncut, G) = 0 ∀G ∈ S

_>,= = −! (=)> �
(=)
>,4 _

4,= ∀n ∈ [ncut, ninit], G ∈ mS

(B.42)

Equation (B.42) inherits many properties from the %# -equation Equation (A.21). The ma-

trices (, � (=) and C still posses the structural properties to be solved using StaRMAP. The

differences to Equation (A.21) are:

• The characteristics regarding the energy n are reversed. While the %# -equation is

solved ”backwards” in energy, the adjoint state equation is solved ”forwards” (from

ncut to ninit).

• The stopping power ( appears outside the partial derivative mn , hence no special treat-

ment is necessary.

• The right-hand side describes an additional source term, which can be handled by the

source term & defined for StaRMAP in Equation (A.33).

In analogy to the definition of the operator which computes one step of the %# -equation

in Equation (A.59), we define an operator which computes one step of the adjoint state

equation (Equation (B.42)) using StaRMAP

_8+1 = %∗,8→8+1
#

(_8 , d,
m5

mk
). (B.43)

Note that 5 is purposefully left arbitrary in this section. We will elaborate 5 and the source

of the adjoint state equation
m5

mk
in Section B.2.6. In the next section, we motivate the

combination of the adjoint state method and adjoint mode algorithmic differentiation based

on a simple example. Afterwards, in Section B.2.6 we extend the ideas presented for the

simplified model to the full k-ratio model from Chapter A.

B.2.5 Motivation of the Differentiation Method based on a

Simplified Forward Model

The concept to combine the adjoint mode of algorithmic differentiation and the adjoint

state method is illustrated by a simple example based on a linear scalar ordinary differential

equation (ODE). In the analogous derivation of the combined method for the k-ratio model

in Section B.2.6, the actual purity of the method is overshadowed by technicalities due to

the complexity of the k-ratio model.

We consider the following forward model based on a linear ODE. The solution variable is

b (C), which relates to some parameters ? through a quantity <(C, ?) in the ODE. In analogy

to our k-ratio model, we assume additivity of <(C, ?) using d (?). The relation between d (?)
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and the parameters ? remains general.

B6 (b,?)︷                                                 ︸︸                                                 ︷
mCb (C) − (<1 (C)d1 (?) +<2 (C)d2 (?))︸                               ︷︷                               ︸

B< (C,?)

b (C) = 0 b (0) = b0

� =

∫ )

0

ℎ(C, ?)b (C) dC

(B.44)

The output of the forward model is � , which is related to b (C) by an integral relation with

additional ℎ(C, ?).

The desired generality in the relation d (?) and ~ (� ), an imaginary scalar output variable, is

achieved by the following observation: Consider the application of adjoint mode algorithmic

differentiation to compute the derivative of ~. Adjoint mode AD seeds the scalar adjoint of

the output variable ~̄ = 1, hence, after being completely computed, the adjoint of any other

preceding variable E is

Ē =
m~

mE
=

(
mF

mE

))
F̄ , (B.45)

where F is another intermediate variable and F̄ its adjoint. If the adjoint F̄ is given, we do

not have to consider a relation to the output ~ for the computation of the adjoint Ē , only

the relation between F and E is of interest. Hence, the consideration of the adjoint F̄ allows

generality in the relation between F and ~.

Thus, for the further analysis of the simplified forward model (Equation (B.44)) the en-

capsulation between given adjoints �̄ and computed adjoints d̄1 and d̄2 is sufficient. Using

Equation (B.45) the two connections between the adjoint state method and adjoint mode

algorithmic differentiation become apparent. The source in the adjoint state equation (Equa-

tion (B.35)) is
m5

mk
=
m5

m�

m�

mk
= �̄ℎ(C, ?), (B.46)

using the Fréchet derivative m�
mk

= ℎ(C, ?). Additionally, we identify the gradient in the adjoint

state method (Equation (B.37)) with

d̄8 =
m~

md8
. (B.47)

Then for the simplified forward model in Equation (B.44) we can derive the following adjoint

relation.
−mCg (C) −<(C, ?)g (C) + �̄ℎ(C, ?) = 0 g () ) = 0

d̄1 = −
∫ )

0

g (C)<1 (C)b (C) dC

d̄2 = −
∫ )

0

g (C)<2 (C)b (C) dC

(B.48)

Thereby, the adjoint state variable is g (C). The adjoint state equation that governs g (C) can
analogously to Equation (B.38) be derived using integration by parts, similarly the initial

value g () ) = 0. The adjoints d̄1 and d̄2 are derived from
m6 (b,?)
md8

= −<8 (C)b (C).
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B.2.6 Differentiation Method for the K-Ratio Model

Now, we extend the differentiation method from the simplified model in the previous section

to the full k-ratio model from Chapter A. Of special focus in the energy stepping for the

solution of the %# -equation. We interpret the moments k as being already discretized on the

grids � · · · defined in Section A.2.1 and do not specifically deal with the spatial integration

in Equation (A.7). In Equation (A.63) the spatial integral is reduced to a sum, hence an

adjoint version of the spatial integration is straightforward. Also, the mass concentrations

d are interpreted as evaluated at the grid points G ∈ � · · ·.

The evolution of the discretized moments k in energy can be viewed as the iterative

application of the operator

k8+1 = %8→8+1
# (k8 , d). (B.49)

The operator depends on the discretized mass concentrations d and computes the moments

k8+1 from k8 . While computing the moments k8 , simultaneously the ionization distribution

q = {q (/,9) , . . .} is approximated using the trapezoidal integration rule (Equation (A.60)).

The iterative accumulation of the integral can be written as

q8+1 = q8 + ΔY8Φ8 , (B.50)

where we define (Φ(/,9) )8 = f (/,9) (n8 ) (k0
0 )8 . For a convenient, iterative notation of the trape-

zoidal rule, we define additional energy steps Y8 = n8−1 + Δn8−1
2

between the original steps n8−1
and n8 . Initial Y1 = n1 and cutoff energy Y=n+1 = n=n are exceptions. Analogously we define the

step ΔY8 = Y8+1−Y8 . The iterative definition in Equation (B.50) coincides with the trapezoidal

rule in Equation (A.60). We interpret (Φ(/,9) )8 as the mean of the integrand over the interval

[Y8 , Y8+1]
(Φ(/,9) )8 ≈

1

ΔY8

∫ Y8+1

Y8

f (/,9) (n)k0
0 (n) dn. (B.51)

After the last iteration =n of computing the moments k8 and their integration into q8 , q#4
is

the ionization distribution, which is used to compute intensities � .

With special focus on the %# energy stepping (Equation (B.49)) and the integration

(Equation (B.50)), we visualize the computational graph of the k-ratio model in Figure B.3.

Some dependencies in the computational graph are not discussed in this section: the relation

between model parameters and mass concentrations d (G ; ?) and the relation of the intensities

� and ~, an imaginary output scalar, to the ionization distribution q=n . But the generality

in both relations is exactly the abstraction we try to achieve; we want to encapsulate the

application of the adjoint state method only to the part of the forward model, where its

application is necessary. The part of the forward model where adjoint mode algorithmic

differentiation cannot be conveniently applied. Hence, the generality in the parts of the

computation prior to mass concentrations d and after intensities � is intended.

Abusing the notation of AD, we will now derive the adjoint propagations inside the

%# -model as an interface between adjoint algorithmic differentiation and the adjoint state

method. Recall the relation of derivative and adjoint (Equation (B.45)) from the previous

section.

We discuss the adjoint of the operator k8+1 = %8→8+1
#

(k8 , d). In Figure B.3 the connection

between the solution variable k8 and the adjoint state variable _=n−8+1 is apparent. For every
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Figure B.3: The computational graph of the calculation of the forward problem with special focus

on the energy stepping while solving the %# -equation and the iterative integration

into the ionization distribution. From material parameters ?, a mass concentration

field d is computed. Every energy step of the %# equation k1, . . .k=n depends on the

mass concentrations d and the previous moments k8−1. After each step the moments

are iteratively integrated into the ionization distribution q1, . . . q=n . The dotted line

ninit → ncut symbolizes the evolution of the moments from high to low energies during

the forward problem. The last iterate of the integration q=n is the complete ionization

distribution and is used to compute intensities � and an imaginary output scalar ~.

The direct relation of intensity � to material parameters ? due to mass attenuation

and x-ray generation distribution is not detailed here. Dashed arrows symbolize the

adjoint computation. Green dashed arrows are not detailed in this section and are left

to an AD tool. Red, blue and purple dashed arrows are governed by the adjoint state

equation and are detailed in this section. Note the reversed computation of the adjoint

state variable _8 from low (ncut) to high (ninit) energies (blue dashed arrow).
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update of the solution variable k8 → k8+1 we identify the update of the adjoint state variable

_=n−8 → _=n−8+1 as the adjoint version of %8→8+1
#

(k8 , d).
If we interpret the adjoint state variable _=n−8+1 as the adjoint of the solution variable

k̄8 , we can identify the computation of the adjoint k̄8 (abusing the notation of AD)

k̄8 =

(
k8+1
k8

))
k̄8+1 ! _=n−8+1 = %∗,=n−8→=n−8+1

#
(_=n−8 , d,

(
m5

mk

)
8

), (B.52)

with the evolution of the adjoint state variable using %∗,8→8+1
#

. Analogously to Equation (B.49)

also _ is interpreted as already discretized on the grids � · · ·.

The source in the adjoint state equation
(
m5

mk

)
8
relates to the update k8 → k8+1, resp.

_=n−8 → _=n−8+1. Thereby the function 5 contains all computations up to the output scalar

~. Also the computations we are trying to keep general. However, using Equation (B.45)

we can write (
m5

mk

)
8

=

(
mΦ8

mk:
;

))
Φ̄8 . (B.53)

We base the calculation of the source of the adjoint state equation on the adjoint Φ̄8 and only

deal with

(
mΦ8

mk:
;

))
. The computation of the adjoint Φ̄8 can be dealt with by an algorithmic

differentiation tool. For completeness, we define the adjoint Φ̄8 as

Φ̄8 = ΔY8q̄8 = ΔY8q̄ , (B.54)

where the adjoint of the ionization cross-section q̄8 = q̄ because of the constant propagation

of adjoints through the sum in Equation (B.50) (
mq8+1
mq8

= 1). Basing the computation of the

source on the adjoint Φ̄8 (or q̄) achieves generality in the computations after the ionization

distribution.

To derive the explicit form of Equation (B.53), we analyze Equation (B.51). For each

computation of Φ(/,9),8 we weight k0
0 by f (/,9) , hence the adjoint version is given by

(
m5

mk:
;

)
8

=

(
mΦ8

mk:
;

))
Φ̄8 =

∑
(/,9)

1

ΔY8
f (/,9)X;,0X:,0Φ̄(/,9),8 (B.55)

The source only applies to _00 (c.f. the deltas X;,0 and X:,0), because only k0
0 is considered to

compute Φ8 .

Generality in the parametrization of d (G ; ?) is achieved by a similar approach. The

adjoint of the mass concentrations are d̄ =
m~

md
(Equation (B.45)). Hence, the adjoints d̄ are

governed by the last step of the adjoint state method (Equation (B.37))

d̄ =
m~

md
=

m

md
〈_,6(d,k̂ )〉 (B.56)

The scalar product in Equation (B.56) is the inner product in the function space !2. To de-

rive Equation (B.56) in explicit form, recall the %# -constraint 6(d,k ) from Equation (A.21)

and the definitions of stopping power ( =
∑=4
8=1 d8(8 (Equation (A.23)) and transport coeffi-

cient C =
∑=4
8=1 d8C8 (Equation (A.26)). The advection matrices in 6(d,k ) do not depend on
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the mass concentrations d, therefore

d̄ =
m

md
〈_,6(d,k̂ )〉 = m

md

∫ ninit

ncut

_) (−mn ((k̂ ) + Ck̂ ) dn

≈
=n∑
8=1

_)=n−8+1 (−mn (
m(

md
k̂8 ) +

mC
md
k̂8 )ΔY8 .

(B.57)

The integral in energy is again approximated by the trapezoidal rule using the energy steps

ΔY8 . The derivatives of the material properties m(
md:

= (: and mC
md:

= C: are the coefficients of

pure elements :, because of the linearity of the sums.

We identify each of the summands in Equation (B.57) with the adjoint accumulation of

_=n−8+1 into d̄, therefore (abusing the notation of AD)

d̄: += _)=n−8+1 (−mn ((:k̂8 ) + C:k̂8 )ΔY8 ! d̄: +=
(
mk8

md:

))
k̄8 . (B.58)

Equation (B.58) is the analogue to the adjoint accumulation of k̄8 ! _=n+8+1 into d̄: in

algorithmic differentiation.

B.2.6.1 Implementation Example

While being conceptually different, the adjoint state method and algorithmic differentiation

share many similarities. Based on the analogies presented in the previous section, we address

the similarity in their implementation. Therefore, we provide a basic implementation exam-

ple of the described differentiation method following the custom adjoint implementations in

Section B.2.3. The code is given in Figure B.4. While hiding many implementation details,

it provides a basic overview of the method when applied in an implementation. The primal

function evaluation calc q (initialization, %# -stepping and integration) is augmented with

storing the computed values of k to a tape k tape, a step that is only necessary for the

adjoint computation, as the primal integration to q can be implemented alongside the iter-

ations to solve k . Memorizing intermediate variable values on a tape is a common pattern

also in algorithmic differentiation.

In the adjoint function calc q adjoint, the adjoint state variable _ is initialized, the

source of the adjoint state equation dfdpsi is computed using the given adjoint q adjoint

and used to perform the stepping in the adjoint %# -equation. Additionally, k is retrieved

from the tape k tape and is used together with _ to accumulate the adjoint d adjoint.
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@adjoint function calc_q (d )
k = k 0()
q = 0

k _tape = []
push!(k _tape , k )
q = q + integrate_q (k )
n = n _init
while n > n _cut

k , n = step_pn(k , d , n )
push!(k _tape , k )
q = q + integrate_q (k )

end

function calc_q _adjoint(q _adjoint)
_ = _ 0()
d _adjoint = 0

n = n _cut
while n < n _init

k = pop!(k _tape)
d _adjoint += integrate_d _adjoint(_ , k )
dfdpsi = compute_adjoint_source(q _adjoint)
_ , n = step_pn_adjoint(_ , d , dfdpsi , n )

end
k = pop!(k _tape)
d _adjoint += integrate_d _adjoint(_ , k )

return d _adjoint
end
return q , calc_q _adjoint

end

Figure B.4: Implementation of the differentiation method described in Section B.2.6. While hiding

many implementation details, it provides an overview over an implementation of the

method.
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B.3 Reconstruction Experiments

B.3.1 Showcase: Inversion of Mass Concentration Models

We compare the mass concentration models presented in Section A.3.1 on the basis of their

properties when applied in a reconstruction.

Consider a compound of lead %1, silicon (8 and copper �D. We define the objective

to compute mass fractions l8 , volume fraction i8 and the parameters in the linear density

model W8 from given mass concentrations dtrue8 , which are computed using {l,i,W}8 = 1
3
for

8 = {%1, (8,�D}. In Figure B.5 the value of the squared error | |d ({l8 , i8 , W8 }) − dtrue | |2 is

illustrated for varying parameters of %1 and (8 (�D can be deduced).

The computation of mass fractions from mass concentrations resembles the last sub-

problem of the actual problem of reconstruction in EPMA. Although it is never explicitly

formulated in the actual reconstruction problem, it appears overshadowed by the subsequent

computation of the forward model. We mention the computation of mass fractions from mass

concentrations to shows the importance of formulating a proper material parametrization

that behaves well-posed in a reconstruction. If the material parametrization already shows

ill-posed behavior, we cannot expect the actual reconstruction to provide reliable results.

All the mass concentration models compared in Figure B.5 show a unique minimum,

but a differently shaped squared error function. We would observe different convergence

behavior of e.g. the gradient descent method. The method performs best, if the optimum

is equally curved in all directions, which is not the case in either of Figure B.5.

A measure for equal curvature (which additionally determines the speed of convergence of

the gradient-descent method) is the condition number ^ of the Hessian � {l,i,W } | |d ({l,i,W}8 =
1
3
)−dtrue | |2. The condition number ^ is given by the ration of maximal to minimal eigenvalue

of the Hessian (c.f. Section B.1.2). For the squared errors of mass concentrations we compute

^ (�l ) ≈ 2.34 ^ (�i ) ≈ 5.39 ^ (�W ) ≈ 2.41, (B.59)

and quantify the visual observation in Figure A.4. Even if the condition number of the vol-

ume fraction model is higher compared to the mass fraction and the linear density model,

a condition number ^ (�i ) of 5.39 is moderate. Hence, all models are suited for applica-

tion in an actual reconstruction problem in EPMA, if the assumptions, which are made in

Section A.3.3 apply for the compound.

B.3.2 Comparison: Sensitivities of a 1D Material with Finite

Differences

We compare sensitivities
m� (/,9 )
m?:

of intensities of multiple x-rays (/, 9) with respect to model

parameters computed using the differentiation method described in Section B.2.6 with sen-

sitivities computed by second order central finite differences. The sensitivities are given

by the partial derivative of the intensity, which is computed using the model presented in

Section A.1, with respect to the parameters ?:

m� (/,9)
m?:

=
m

m?:
A (/,9) (d8 (G ; ?: )) ◦ X(/,9) (d8 (G ; ?: )) ◦ q (/,9) ◦k (d8 (G ; ?: )). (B.60)

A comparison to finite differences addresses several questions at the same time:
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(a) Mass fractions (b) Volume fraction (c) Linear density

Figure B.5: The squared error between mass concentrations | |d ({l,i,W}8 ) − dtrue ({l,i,W}8 = 1
3 ) | |2

in a {%1, (8,�D}-compound computed using the different mass concentration models.

Mass fractions l8 , volume fractions i8 and W8 are constrained by Equation (A.69),

hence the triangular shape. For better visualization of the minimum, the color values

are clipped to 0 : black, > 10 : yellow.

domain S (−500nm, 0nm) =G = 100

energies [ncut, nmin] (0.5keV, 16keV)
approximation order %# # = 9

beam n, fn 15keV, 0.1keV

elements �D and #8, {l,i, ?}8 = 0.5

Table B.2: Model settings used for the comparison of 1D sensitivities

• If the computed derivatives between our method and finite differences match, the

comparison validates our implementation.

• We can demonstrate the claimed superiority of our method compared to finite differ-

ences in terms of computation time.

• It provides insight into the nature of to model. The sensitivities
m� (/,9 )
m?:

are the first

order linear dependency of intensities with respect to model parameters, hence a large

sensitivity relates to a strong dependency, a small sensitivity to a weak dependency.

This is particularly interesting for the inverse problem, because it also unveils possible

difficulties in the reconstruction.

For validation of our implementation, we compare the sensitivities for all parametriza-

tions introduced in Section A.3.3. The physical setup and the settings of the %# approxima-

tion for this example can be found in Table B.2 while the configurations of the parametriza-

tions are given in Table B.3. Parameter values for the parametrizations are randomly chosen.

Piecewise-Constant (=G = 21, =~ = 2, =I = 2), =? = 20

Linear (=G = 20, =~ = 1, =I = 1), =? = 20

Neural Network 3 layers, (1 × 1, norm.) → (1 × 10, tanh) → (10 × 1, sigmoid), =? = 31

Table B.3: Parametrization used for the comparison of 1D sensitivities
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(a) Piecewise-Constant (b) Linear (c) Neural Network

Figure B.6: A visualization of the sensitivities computed using the method presented in Sec-

tion B.2.6 and using finite differences. We abuse the parametrization function of

each parametrization and plot % (G ; m� (/,8 )
m?:

). The curves computed using our method

(solid lines) coincide with the curves computed using finite differences (black dashed

lines). While for the piecewise-constant and the linear parametrization an interpre-

tation of this plot is possible, an interpretation for the neural network is unclear. A

quantitative comparison of sensitivity values is given in Table B.4.

For a visualization of sensitivities, we abuse the parametrization functions % (G ; ?) which
are defined for each parametrization. The sensitivities of one x-ray intensity � (/,9) have

the same dimensionality as the parameters describing the material, hence we visualize the

output of the material parametrization defined in Section A.3.3 using the sensitivities as

its parameters % (G ; m� (/,9 )
m?:

). In Figure B.6 the parametrization functions % (G ; m� (/,9 )
m?:

) are

visualized.

For the piecewise-constant and the linear parametrization an interpretation of this plot

is possible. Because the function value % (G ; ?) for piecewise-constant and linear is the value

of the parameters ? (or a linear interpolation of it), we have an intuition how to interpret

the plot. Increasing a parameter, increases the mass concentration of �D and simultaneously

decreases the mass concentration of #8, hence the positive values for �D x-rays and the

negative value for #8 x-rays. In depth the sensitivity decreases, because the ionization

distribution for all x-rays decreases and the absorption increases.

However, for the neural network % (G ; ?) is the forward evaluation of the network based

on the sensitivities, and we lack a clear interpretation.

For each parametrization we compare % (G ; m�/,9

m?
) for sensitivities computed by our method

(colored, solid lines) with the sensitivities computed by finite differences (black, dashed

lines). The curves coincide. Additionally, since the visualizations are overshadowed by

the parametrization function % (G ; ?) where errors in the sensitivities can get cancelled, we

compared the relative errors of sensitivities

max
:

������
1

m� (/,9 )
m?:

(
m� (/,9)
m?:

−
� (/,9) (?: + ℎ) − � (/,9) (?: − ℎ)

2ℎ

)������ . (B.61)

In Table B.4 the relative errors are shown. All relative errors are < 0.003. Derivatives

computed by algorithmic differentiation are exact (up to machine precision) [Naumann,

2011]. Our method as well as finite differences only provide approximations of the derivative.

For our method, the underlying approximation of the adjoint state variable introduces errors,

for finite differences the approximation error originates from the step size ℎ. The presented
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% (G ; ?)
(/, 9) (�D,  − !2) (�D,  − !2) (�D,  − !2) (�D,  − !2)

Piecewise-Constant 0.0015 0.0005 0.0013 0.0003

Linear 0.0030 0.0007 0.0008 0.0011

Neural Network 0.0001 5.9367 × 10−5 6.1947 × 10−5 4.8781 × 10−5

Table B.4: Relative Errors in the sensitivities/derivatives of intensities for multiple x-rays (/, 9)
and parametrization methods % (G ; ?). Sensitivities/derivatives are computed using the

method presented in Section B.2.6 and using a finite difference approximation of order

2.

% (G ; ?)
Method

AD FiniteDiff

Piecewise-Constant 5.52s 31.02s

Linear 5.37s 31.14s

Neural Network 5.85s 45.84s

Table B.5: Runtimes of the computation of sensitivities/derivatives using the method presented in

Section B.2.6 (AD) and a finite difference approximation of order 2 (FiniteDiff).

relative error of < 0.003, and various other comparisons of derivatives of individual model

parts to finite differences which are performed during the implementation, convince us that

the method correctly estimates derivatives.

In Table B.5 we compare the runtime of the computations. Here, the superiority of

our method compared to finite differences becomes apparent. In Section B.2.1 we claimed

that the differentiation using our method scales in the number output variables, while the

application of finite differences scales in the number of input variables. The number of

output variables is the number of different x-ray intensities � (/,9) , here four. The number of

parameters =? for each parametrization is given in Table B.3.

Approximating the sensitivities of the neural network parametrization using the pre-

sented method only takes marginally longer than approximating sensitivities of the piecewise-

constant and the linear parametrization, although the neural network has ≈ 1.5× the num-

ber of parameters. Using finite differences the scaling in the number of input parameters is

clearly visible.

B.3.3 Showcase: 1D Reconstruction of a Sharp and a Diffusive

Interface

We present the reconstruction of a coated material consisting of iron �4 and nickel #8 with

a sharp (discontinuous) and a diffusive (continuous) interface between the layers. By means

of this example we compare the parametrizations described in Section A.3.3. For a fair

comparison, the number of parameters in each parametrization is chosen to be 10. For the

piecewise-constant parametrization, the interval [0nm,−300nm] is divided in depth into 10

equal parts. Note that the location of the sharp interface aligns with one of the interfaces

of the piecewise-constant parametrization. For the linear interpolation, we discretize the

interval in 9 equal parts. The neural network consists of a normalization layer, a dense 1× 3
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tanh layer and a 3 × 1 sigmoid layer. We strongly enforce the constraint for the volume

fractions i#8 = 1 − i�4 , hence at every location a scalar % (G ; ?) completely describes the

material. To resolve the interface position and structure, we compare k-ratios from multiple

different beam energies between 9keV and 15keV. Additional %# model settings and the

considered x-rays are tabulated in Table B.6. We use the squared error of k-ratios as the

objective function and choose the BFGS method implemented in Optim.jl [Mogensen and

Riseth, 2018] as optimization method.

In Figure B.7 the reconstructed density of the material with a sharp interface is visu-

alized using the different parametrizations. From initial configurations (piecewise-constant,

linear: 0.5 �4 and 0.5 #8; neural network: random) the parametrizations iterate towards the

reference density (black line) during the optimization. We visualize the initial, first, fifth

iteration and the 100th iteration. The inability of the linear parametrization to represent

discontinuities becomes apparent. However, the piecewise-constant parameterization only

approximates perfectly because the interface matches the interface of the reference. On the

other hand, the neural network parametrization is flexible enough to identify the location

of the interface and to approximate the discontinuity.

In Figure B.8 the reconstructed density of the material with a diffusive interface is visual-

ized. Except for the reference material, exactly the same settings as for the reconstruction of

the sharp interface are used. Again, the parametrizations iterate towards the reference den-

sity (black line). For the diffusive interface, none of the parametrizations can reconstruct the

interface perfectly, but the linear and the neural network parametrizations perform better

than the piecewise-constant parametrization.

In Figure B.9 we visualize the normalized error, the value of the objective function

| |: (?)−:exp | |2, the error in the mass concentrations | |d (G)−dtrue | |2 and the error of additional

k-ratio measurements | |:+ (?) − :exp+ | |2 (with beam energies 11keV and 14keV) during the

optimization iterations. The kinks in the error of the objective function are an artifact of

the Optim.jl implementation. Their default implementation bases on the combination of a

line search method [Hager and Zhang, 2005] and the BFGS algorithm presented in Nocedal

and Wright [2006].

Differences in the performance of the different parametrizations are clearly visible. The

material error for the piecewise-constant parametrization for the sharp interface is by far

the smallest, due to the possible perfect reconstruction. Comparing the material error for

piecewise-constant and linear parametrization for the sharp and the diffusive interface, they

vary. Only the neural network parametrization performs similarly well for both examples.

A correlation between the material error and the error of additional k-ratios would be

beneficial, but is hard to obtain. Ideally both would behave similarly, because then we

could propose the error in additional k-ratios as a suitable reconstruction quality measure

(Section B.1.1). However, the evaluation of reconstruction quality measures is beyond the

scope of this work and is deferred to further research.
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domain S (−500nm, 0nm) =G = 100

energies [ncut, nmin] (7.0keV, 15.5keV)
approximation order %# # = 9

beam n, fn {9, 10.5, 12, 13.5, 15}keV, 0.1keV

elements/x-rays (#8,  − !2), (#8,  − !3), (�4,  − !2) and (�4,  − !3)

Table B.6: Model settings used for the reconstruction of the 1D interfaces

(a) Piecewise-Constant (b) Linear (c) Neural Network

Figure B.7: The reconstructed density of a material with a sharp interface between an iron �4

layer covering an #8 substrate. We use multiple material parametrizations presented

in Section A.3.3 for the reconstruction. For the piecewise-constant and the linear

parametrization, the geometry (interfaces) are visualized by gray vertical lines. The

black line shows the reference density. All parametrizations converge. The piecewise-

constant parametrization has a clear advantage, because the interface aligns with an

interface of the parametrization. The linear parametrization cannot approximate the

discontinuous interface, hence it converges to presented smoothed representation. The

neural network is flexible enough to identify the location of the interface and also

approximates the discontinuity using a strong gradient.

(a) Piecewise-Constant (b) Linear (c) Neural Network

Figure B.8: The reconstructed density of a material with a diffusive interface between an iron �4

layer covering an #8 substrate. We use multiple material parametrizations presented

in Section A.3.3 for the reconstruction. For the piecewise-constant and the linear

parametrization, the geometry (interfaces) are visualized by gray vertical lines. The

black line shows the reference density. All parametrizations converge. None of the

parametrizations can represent the interface perfectly. The bilinear and the neural

network perform better for this example, because of their flexibility to approximate

continuous functions.
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(a) Sharp Interface (b) Diffusive Interface

Figure B.9: The value of the objective function and additional reconstruction quality measures dur-

ing the iterations of the optimization for all parametrizations. The objective function

| |: (?) − :exp | |2 is visualized as a solid line. Also, the material error | |d (G) − dtrue | |2

(dashed line) and the error of k-ratios | |:+ (?) − :exp
+

| |2 (dotted line) from additional

beam energies (11keV and 14keV) is plotted.
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domain S (−300nm, 0nm) × (−150nm, 150nm) (=G , =~) = (80, 80)
energies [ncut, nmin] (7.0keV, 12.5keV)
approximation order %# # = 9

beam `n , fn 12keV, 0.2keV

beam `G , fG (0, {−50,−25, 0, 25, 50})nm, 20nm

beam `Ω, ^ [−1, 0], 10
elements/x-rays (�D,  − !2), (�D,  − !3), (�4,  − !2) and (�4,  − !3)
standard materials (�D,  − !∗) : (1.0�D, 0.0�4), (�4,  − !∗) : (0.0�D, 1.0�4)

Table B.7: Model settings used for the 2D reconstruction of the ellipsoidal �D inclusion.

B.3.4 Showcase: 2D Reconstruction of an Ellipsoidal Material

Structure

We describe the use case of a reconstruction of an ellipsoidal copper �D inclusion in an

iron �4 substrate. With this example we also show the extensibility of our method to an

additional material parametrization.

A researcher is investigating a material consisting of �D and �4, where he conducts ex-

periments using a 12keV electron beam with multiple beam positions. From a line-scan he

observes the (non-noisy) k-ratio profile plotted in Figure B.10. Only the k-ratios retrieved

from five beam positions `~ = {−50,−25, 0, 25, 50}nm which are marked by black crosses are

used for the reconstruction. The profile shows an increase in the (�D,  − !2) k-ratio for

a beam position close to ≈ 25nm. From previous analysis of the material the researcher

knows, that the material tends to have elliptical �D inclusions of different size, shape and in-

terface structure. Hence, for the present investigation, he also assumes an elliptical material

structure.

He specifies a material parametrization which encodes his knowledge of an elliptical

structure (with unknown position (`1, `2), unknown rotation A and unknown scaling fac-

tors for the principal axes (0, 1)). For the unknown interface structure, the neural network

parametrization can be utilized in degenerated form. He specifies a parametrization (Sec-

tion A.3.3.3) with the following layers: (2 × 2, norm.) → (2 × 1, ellipse) → (1 × 1, sigmoid).
The extension of the current implementation to a layer, which describes ellipsoidal struc-

tures is shown in Section C.2. To complete the material parametrization, he assumes that

the volume fraction model (c.f. Section A.3.1) sufficiently describes the material. Hence,

the scalar volume fraction i�D (G) is parametrized and the volume fraction of �4 is deduced

from i�4 (G) = 1 − i�D (G). As an initial guess, he assumes the inclusion is circular and is

located around the maximum of the (�D,  − !2) k-ratio profile.

The k-ratio shown in the line profile in Figure B.10 are artificial (simulated) measure-

ments. Hence, the reference material dtrue which is used to compute the artificial measure-

ments :exp is known. We visualize the total density dtot of the reference material in Fig-

ure B.11 and additionally show the ionization distributions of (�D,  −!2) and (�4,  −!2) that
define the size of the interaction volume. The ellipsoidal �D inclusion is clearly smaller than

the interaction volumes. Additional settings of the k-ratio model are shown in Table B.7.

For the reconstruction we use the L-BFGS algorithm implemented in Optim.jl [Mo-

gensen and Riseth, 2018] using the default settings. The total density of the material dtot
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Figure B.10: The k-ratio profile of the elliptical �D inclusion in the �4 substrate computed using a

12keV electron beam. Dashed lines show the k-ratio profiles of (�D,  −!2) (blue) and
(�4,  − !2) (orange) with a high beam resolution. Black marker show the k-ratios

which are used for the reconstruction. While not being directly visible, the shape and

height of the k-ratio curves encode information about the shape and location of the

inclusion and the structure of the interface between inclusion and substrate.

(a) The density dtrue
tot

of the reference

material.

(b) The ionization distribution

q (�D, −!2) .

(c) The ionization distribution

q (�4, −!2) .

Figure B.11: The total density and two ionization distribution fields of the reference material. The

ionization distribution curves determine the size of the interaction volume. The size

of the ellipsoidal �D inclusion is smaller than the interaction volume.
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(a) Initial (b) Iteration 30 (c) Iteration 60

(d) Iteration 90 (e) Iteration 120 (f) Iteration 250

Figure B.12: The reconstructed density dtot of the �4 material with a �D inclusion during the

iterations of the L-BFGS optimization.

during the iteration steps is visualized in Figure B.12. From the initial guess the reconstruc-

tion converges to the reference material. Alongside the total density of the reconstructed

material we visualize the k-ratio profiles of (�D,  −!2) and (�4,  −!2) in Figure B.13. The

shape of the curves quickly coincide with the measured k-ratios (black crosses). At itera-

tion 30 the measured k-ratios are already well approximated, the total density, however, is

not. For sufficient reconstruction of the ellipsoidal structure, the error in the k-ratios (the

objective function) must be further reduced. In Figure B.14 we show the (normalized) value

of the objective function | |: (?) −:exp | |2 and the (normalized) material error | |d (?) − dtrue | |2

during the iterations of the optimization. For the first 50 iterations, the value of the objec-

tive function decreases, whereas the material error remains close to the initial error. Only

after the first 50 iterations, the material error also decreases. In Figure B.12 this effect is

also observed, where only after iteration 60 the shape of the reference ellipse starts to form.

B.3.5 Comparison: Representation Capabilities of the Material

Parametrizations

We compare the capability of each material parametrization presented in Section A.3.3 to

represent the ellipsoidal material structure from Section B.3.4. Therefore, the material
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(a) (�D,  − !2) (b) (�4,  − !2)

Figure B.13: The k-ratio profile of (�D,  − !2) and (�4,  − !2) during the iterations of the re-

construction. Black crosses mark the measured k-ratios which are considered in the

objective function | |: (?) − :exp | |2 (c.f. Figure B.10). The visualized iterations are

the same as in Figure B.12. Note that the k-ratios quickly converge to the measured

values, although the shape of the ellipse does not yet coincide with the shape of the

ellipse in the true material (Figure B.11).

Figure B.14: Normalized errors of the objective function | |: (?) − :exp | |2 and the material error

| |d (?) − dtrue | |2 during the iterations of the L-BFGS optimization. Although the

objective function significantly decreases for the first 50 iterations, the material error

remains close to the initial error. The same behavior is noticed in Figures B.12

and B.13.
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Piecewise-Constant (−100nm, 0nm) × (−120nm, 120nm), (=G = 13, =~ = 13, =I = 2),
=? = 144

Linear (−100nm, 0nm) × (−120nm, 120nm), (=G = 12, =~ = 12, =I = 1),
=? = 144

Neural Network 4 layers, (2×2, norm.) → (2×20, tanh) → (20×3, tanh) → (3×1, id),
=? = 127

Table B.8: Settings used for comparison of 2D parametrizations.

(a) Piecewise-Constant (b) Linear (c) Neural Network

Figure B.15: Resulting total density dtot (G) of the direct minimization of the material error

| |d (G ; ?) − dtrue (G) | |2. They allow a comparison the representation capabilities of

the 2D parametrizations. The reference dtrue (G) is the ellipsoidal inclusion from

Figure B.11a. Clearly artifacts of the parametrizations are visible. The neural net-

work performs comparatively best, but needs the most iterations and thus the longest

computation time.

error | |d (G ; ?) − dtrue (G) | |2 is optimized directly. Piecewise-constant and linear parametriza-

tion only discretize a section of the visualized domain in Figure B.11a, which is specified

along with the other settings of the parametrizations in Table B.8. The neural network

parametrization consists of 4 layers, with the tanh activation function applied to its inter-

mediate layers. For a fair comparison, the number of parameters =? of each parametrization

is roughly 130.

Figure B.15 shows the results of an optimization using the L-BFGS method implemented

in Optim.jl. Clearly, artifacts of the parametrizations are visible. The piecewise-constant

parametrization cannot approximate the sharp interface of the ellipsoidal inclusion, and av-

erages in boxes which intersect the interface. Also the linear parametrization cannot approx-

imate the sharp interface, but represents the interface by a gradient. Both parametrizations

would perform better, if the number of parameters would be higher.

Despite the slightly smaller number of parameters, the neural network approximates

the ellipsoidal interface very well. However, the better approximation quality does not

come without disadvantages. The number of iterations of the L-BFGS method for the

minimization of the material error was

Piecewise-Constant : 4, Linear : 23, NN : 655, (B.62)
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Figure B.16: The normalized material error | |d (G ; ?) − dtrue | |2 during the first 100 iterations of

its minimization using different optimization methods (c.f. Section B.1.2). We

compare the steepest descent method, the momentum method and the L-BFGS method

implemented in Optim.jl along with the ADAM method implemented in Flux.jl.

Settings of all methods are left default, except for the ADAM method, where we

specify U = 0.05.

and thus clearly the longest for the neural network. If the piecewise-constant or the linear

parametrization is used, the objective function is basically quadratic in the parameters ?.

The L-BFGS method builds on the approximation of the objective function as a quadratic

function, hence its good performance for the piecewise-constant and the linear parametriza-

tion. The neural network parametrization introduces a non-linearity which on one hand

increases the representation capability, but on the other hand increases the complexity of

the optimization.

Based on the optimization of the neural network parametrization, we additionally com-

pare convergence using the different optimization methods presented in Section B.1.2. In

Figure B.16 the normalized value of the objective function is visualized for the steepest

descent method (blue), the momentum method (orange) and the L-BFGS method (green)

which are implemented in Optim.jl. Additionally we visualize value of the objective mini-

mized by the ADAM method (purple) implemented in Flux.jl. ADAM and L-BFGS per-

form significantly better for this example than steepest descent and the momentum method.
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1 Summary

The aim of this thesis is the derivation and implementation of a reconstruction method in

EPMA, which is based on a deterministic k-ratio model. Simultaneously, we target a general

material description and a general objective function, which allows the extension of the

method to various problem-dependent material structures and optimization methods; thus

equipping the reconstruction method for a variety of questions posed to EPMA (Section 2).

In Chapter A we describe a k-ratio model based in the %# moment expansion of the

linear Boltzmann equation in Continuous Slowing Down approximation and describe the

implementation of StaRMAP.jl, a generic solver for moment equations of a specific structure.

We provide comparisons of our implementation to classical models applied for reconstruction

in EPMA and showcase the flexibility of our k-ratio model.

We introduce Chapter B with the proposal to utilize gradient-based iterative optimization

for the reconstruction problem in EPMA. For the application of gradient-based methods,

the efficient differentiation of the forward model is crucial. Therefore, we describe a method

for differentiation of the presented forward model. Our differentiation method combines the

adjoint state method with the adjoint mode of algorithmic differentiation and can be imple-

mented as an enclosed module for usage with multiple algorithmic differentiation libraries.

Thereby, the parts of the computation prior to the forward model (the material descrip-

tion) and the parts of the computation after the forward model (the objective function) are

generic and can be handled by an AD tool.

We conclude Chapter B with a validation of our differentiation method and reconstruc-

tion experiments. By means of the different reconstruction experiments, we compare general

material parametrizations. The comparison emphasizes the application of non-linear ma-

terial parametrizations. In our examples, the parametrization using neural networks has

proven to be flexible enough to sufficiently approximate the given materials. At the same

time, however, a trade-off must be made between the higher flexibility and the more complex

optimization as compared to linear parametrizations.

The example in Section B.3.4 illustrates our idea of a possible real-world application of

our method. The combination of measurements with prior knowledge, makes high-resolution

reconstruction problems tractable with a reasonable amount of measurement data. At the

same time, we demonstrate the extensibility of our implementation to various material struc-

tures.
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2 High Resolution Imaging in EPMA

High resolution imaging, i.e. the reconstruction of material structures which are smaller than

the interaction volume, is possible with sufficient data or sufficient material assumptions.

But there will always be a relation between the accuracy of the measurement and the

model to the accuracy of the reconstruction. Especially with respect to high-resolution,

the analysis of this relation is key. Due to the counting in detecting x-rays, the intensity

measurements in EPMA are governed by a Poisson counting process; one of many sources of

measurement uncertainty in EPMA. Simultaneously, also model parameters e.g. the beam

position or size and material parameters e.g. the stopping power are uncertain. To achieve

a reliable reconstruction result, the quantification and propagation of uncertainties in the

whole reconstruction process is necessary.

While writing this thesis, we discovered the possibility of implementing an optimization

method that is based on different approximations of the gradient. The forward model con-

sists of the composition of multiple operators, which depend on the material parameters.

However, the complexity and runtime to compute the derivative of each operator differs. A

reconstruction method, that builds on an approximate gradient (which neglects the depen-

dency of some model operators) and adapts the approximation with increasing iterations,

can reduce the runtime of a reconstruction.

In addition to the %# -equations, Bünger [2021] also discusses the filtered %# -equations

which provide similar approximation quality with a smaller number of moments. Further re-

search on the forward model could additionally include adaptability in the spatial discretiza-

tion and in the number of moments or specialization on specific material parametrizations.

The runtime of the forward model always determines the runtime of the reconstruction,

hence any reduction is useful.

In general, we encourage further research on reconstruction in EPMA using deterministic

transport equations. Although the combination with experimental data will probably raise

many challenges, the presented results convince us that high-resolution imaging in EPMA

is possible.
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Appendix

C.1 Explicit Formulas for the Boundary Matrix

Here we present formulas for the %# boundary matrices ! (=) which are derived in Bünger

[2021]. These explicit formulas can directly be implemented for two spherical harmonics (;, :)
and (; ′, : ′). The coefficient �:

;
is the normalization constant defined in Equation (A.14), =!!

is the double factorial, the product of all integers from 1 to = that have the same parity as

=, Γ(=) = (= − 1)! is the Gamma function and ( ·
· ) is the binomial coefficient.
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C.2 Implementation of an Ellipsoidal Material Struc-

ture into the Existing Code

We describe the additional steps to implement a 2D ellipsoidal material structure into the

existing code as a custom layer of the neural network parametrization (Section A.3.3.3).

The reconstruction shown in Section B.3.4 is based on this implementation.

In 2D an ellipse is defined by its center (`1, `2), a rotation A and scaling factors in its

principal axis 0 and 1. We define the custom layer (with (G1, G2)) ∈ R2 as inputs and I ∈ R

as output)

I =
((G1 − `1) cos(A ) + (G2 − `2) sin(A ))2

02
+ ((G1 − `1) sin(A ) − (G2 − `2) cos(A ))2

12
. (C.2)

For completeness, we additionally derive the adjoint version of Equation (C.2). This task

could just as well be done by an AD tool. We define two intermediate variables that occur

repeatedly in Equation (C.2).

31 = G1 − `1
32 = G2 − `2

(C.3)

Then the adjoint version can be derived from partial derivatives of Equation (C.2).

3̄1 =

(
2 cos(A ) (31 cos(A ) + 32 sin(A ))

02
+ 2 sin(A ) (31 sin(A ) − 32 cos(A ))

12

)
Ī

3̄2 =

(
2 sin(A ) (31 cos(A ) + 32 sin(A ))

02
− 2 cos(A ) (31 sin(A ) − 32 cos(A ))

12

)
Ī

Ā =
2(02 − 12) (31 cos(A ) + 32 sin(A )) (31 sin(A ) − 32 cos(A ))

0212
Ī

0̄ =
−2(31 cos(A ) + 32 sin(A ))2

03
Ī

1̄ =
−2(31 sin(A ) − 32 cos(A ))2

13
Ī

¯̀1 = −3̄1
¯̀2 = −3̄2
Ḡ1 = 3̄1

Ḡ2 = 3̄2

(C.4)

The parametrization, which is applied in the reconstruction example in Section B.3.4

consists of a normalization layer, the described ellipsoidal layer and a 1 × 1 dense output

layer with a sigmoid activation function. The output layer models the interface structure

(sharp vs diffusive) of the ellipsoidal inclusion in the material. The output of the sigmoid,

which by definition is ∈ [0, 1] specifies the volume fraction of �D, the volume fraction of �4

is deduced from the constraint i�D + i�4 = 1.

The specification of the ellipse layer is related to the concept of feature extraction in

machine learning [Bishop, 2006]. Feature extraction is usually applied to reduce the dimen-

sionality of the data and to accelerate the optimization. Normally, no new parameters are

introduced for feature extraction layers. For our use case, the ellipsoidal layer facilitates the

interpretation of the subsequent output layer as the interface structure between inclusion

and substrate.

81



APPENDIX

In similar manner many other material structures can be implemented. Note that for the

implementation of adjoints only the respective forward evaluation is analyzed. Afterwards

the parametrization can seamlessly be integrated into the existing implementation.
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