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Electron Probe Microanalysis (EPMA)[1]: Quantification of solid materials based on intensity measurements of characteristic
x-radiation induced by focussed beams of electrons.

Inverse Problem of Material Reconstruction:

d∗(G) = argmin
d (G)

disc(:model[d (G)], :exp.)

Find the material (d (G): mass concentrations) such that a model (:model[d]) reproduces the observations (:exp.: k-ratios,
normalized intensities).

Spatial Resolution[2]: Currently limited by k-ratio models, that assume homogeneity inside the interaction volume.
Decrease of the interaction volume by physical means: → less depth information, → decreased signal-to-noise ratio
Employing availiable Monte Carlo models, that allow inhomogeneous materials: → hindered by their statistical noise.
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Our Goal: Combine k-ratios from beams with overlapping interation volumes. Use gradient based optimization to solve the minimization problem. Employ a deterministic
k-ratio model. Compute the gradient using adjoint algorithmic differentiation. Use different material parametrizations for regularization. → Universal and efficient reconstruction

k-ratio Model based on %# Approximation of BCSD[3]

X-Ray Generation and Attenuation:
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The fields describe: Attenuation A, Number of atoms N , Ionization distribution I.
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Electron Transport: Evolution of D (;,:)
U =

∫
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|E (n) |5U.

:
;
dΩ is described by the spheri-

cal harmonics (%# : {.
:
;
};≤#,|: |≤;) moment expansion of the linear Boltzmann equation

in continuous-slowing down (BCSD) approx.
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Additivity approximation for scattering-cross-sections → material coefficients (,& and
transport matrices �(3) follow from CSD-scattering cross sections and the %# -expansion
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Electron beam described by energy-stable and characteristic boundary conditions
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Structure/Sparsity of �U = 0 motivates the solving using a finite-difference staggered-
grid method (StaRMAP).
U multiindex (beam setup, x-ray line), gU,8 mass attenuation coefficient, G3 detector position, G

∗
3
reflection of G3 about G , �U atomic

weight, f ionU ionization cross section, E (n) electron velocity, 5U electron number density, 5 beamU number density of beam electrons,

(8 stopping power, &8 transport coefficient

3D Electron Fluence in �D and #8

The D (0,0)
U moment of |E |5U computed using %9 in a material consisting of Copper and Nickel. 50G50G50

spatial discreatization. Beam energy 12 ± 0.3:4+ .

Ionization Distribution %# vs "� (Monte Carlo)

•Good agreement of ionization curves IU (G) com-
puted using our method and the Monte Carlo code
NeXLCore.jl.

• Both codes use the same physical parameters (stop-
ping power/scattering cross section).

• Computed using %21. 500 spatial discretization.
(MC: number of electrons: 60000)

•MC results show typical statistical noise.
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Inverse Problem of Material Reconstruction

Reconstructing the infinite-dimensional d (G) from the finite-dimensional {:U}U is ill-posed.
We focus on themaximum likelihood/maximum posterior estimate under the assump-
tion of gaussian noise → squared error.
Regularization using a certain parametrization d (G ; ?) (? ∈ ℝ

=: parameters) and prior
information R(d (G ; ?)).

PDE-constrained minimization problem

?∗ = argmin
?∈P

∑

U

(:model[d (G ; ?), D] − :exp)2 + R[d (G ; ?)]

B .C . �U (DU, d (G ; ?)) = 0 ∀U

Differentiation Framework based on AD[4]

Algorithmic Differentiation (AD): rules for modular and efficient derivative compu-
tation

- adjoint/reverse mode AD facilitates efficient O(1) gradient computation

- chain rule for function composition enables modularity and encapsulation of code

Fundamental Modes of AD:

- tangent/forward mode derived from the directional derivative
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- adjoint/reverse mode derived from a scalar product identity
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Explicit vs. Implicit AD:

Primal Tangent mode Adjoint mode
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Reconstruction of an Ellipsoidal Inclusion in 2D

• k-ratio profile of (�D,  − !2) and
(�4,  − !2) during L-BFGS iterations.

• Black crosses: measurements considered
in the objective

• k-ratio profiles almost agree quickly

• Parameters: (G,~ ∈ ℝ) position of el-
lipse, (0, 1 ∈ ℝ) principal axis, (A ∈ ℝ)
angle

• Initial guess (left), iteration 60 (middle)
and 250 (right) of the total density.

•With proper parametrization, recon-
struction is possible given limited data

Layer Reconstruction Using Different Parametrizations

Comparison of a piecewise-constant (left), a bilinear (middle) and a non-linear (right) parametrization for
the 1D reconstruction of a sharp(upper) and a diffusive(lower) material interface between an �4-layer on
#8-substrate (G is depth). Beam energies: 9, 10.5, 12, 13.5, 15:4+ . %9.


