Material Imaging in Electron Probe Microanalysis

Tamme Claus^{a,*}, Silvia Richter^b and Manuel Torrilhon^a

* claus@acom.rwth-aachen.de ^a RWTH Aachen University, Applied and Computational Mathematics (ACoM) ^b RWTH Aachen University, Gemeinschaftslabor für Elektronenmikroskopie (GFE)

Electron Probe Microanalysis $(EPMA)^{[1]}$: Quantification of solid materials based on intensity measurements of characteristic x-radiation induced by focussed beams of electrons.

Find the material ($\rho(x)$: mass concentrations) such that a model ($k^{model}[\rho]$) reproduces the observations (k^{exp} : k-ratios, normalized intensities).

Spatial Resolution^[2]: Currently limited by k-ratio models, that assume homogeneity inside the interaction volume. Decrease of the interaction volume by physical means: \rightarrow less depth information, \rightarrow decreased signal-to-noise ratio Employing availiable Monte Carlo models, that allow inhomogeneous materials: \rightarrow hindered by their **statistical noise**.

Inverse Problem of Material Reconstruction:

 $\rho^*(x) = \arg \min$ $\rho(x)$ $\mathrm{disc}(k^{\mathrm{model}}[\rho(x)],k^{\mathrm{exp.}})$

Electron Transport: Evolution of u $\binom{(l,k)}{\alpha} = \int$ $\int_{\mathbb{S}^2} |v(\epsilon)| f_\alpha Y_l^k$ ι $d\Omega$ is described by the spheri- $\mathbf{cal\text{ }harmonics }\text{ }(P_N\text{: }\{Y_l^k\})$ $\{a_l^{rk}\}_{l \leq N, |k| \leq l}\}$ moment expansion of the linear Boltzmann equation in continuous-slowing down (BCSD) approx.

Our Goal: Combine k-ratios from beams with overlapping interation volumes. Use gradient based optimization to solve the minimization problem. Employ a deterministic

k-ratio Model based on P_N Approximation of BCSD^[3]

Structure/Sparsity of $F_{\alpha} = 0$ motivates the solving using a **finite-difference staggered**grid method (StaRMAP).

 α multiindex (beam setup, x-ray line), $\tau_{\alpha,i}$ mass attenuation coefficient, x_d detector position, x_d^* \mathbf{r}_d^* reflection of \mathbf{x}_d about $\mathbf{x}, \mathbf{A}_{\alpha}$ atomic weight, $\sigma_{\alpha}^{\text{ion}}$ ion ionization cross section, $v(\epsilon)$ electron velocity, f_{α} electron number density, f_{α}^{beam} number density of beam electrons, S_i stopping power, Q_i transport coefficient

3D Electron Fluence in Cu and Ni

The $u_{\alpha}^{(0,0)}$ moment of $|v|f_{\alpha}$ computed using P_9 in a material consisting of Copper and Nickel. 50 x 50 x 50 spatial discreatization. Beam energy $12 \pm 0.3 \text{keV}$.

Ionization Distribution P_N vs MC (Monte Carlo)

X-Ray Generation and Attenuation:

$$
k_{\alpha}[\rho] = \frac{I_{\alpha}[\rho]}{I_{\alpha}[\rho_{\alpha}^{\text{std}}]} \quad \text{where} \quad I_{\alpha}[\rho] = \int_{G} \mathcal{A}_{\alpha}[\rho] N_{\alpha}[\rho] J_{\alpha}[\rho] dx
$$

$$
\bar{\mathcal{A}}_{\alpha} = \frac{N_{\alpha}I_{\alpha}\bar{k}_{\alpha}}{I_{\alpha}^{\text{std}}} \quad \bar{\mathcal{N}}_{\alpha} = \frac{\mathcal{A}_{\alpha}I_{\alpha}\bar{k}_{\alpha}}{I_{\alpha}^{\text{std}}} \quad \bar{I}_{\alpha} = \frac{\mathcal{A}_{\alpha}N_{\alpha}\bar{k}_{\alpha}}{I_{\alpha}^{\text{std}}} \quad \text{(adjoint/reverse operators)}
$$

The fields describe: Attenuation \mathcal{A} , Number of atoms \mathcal{N} , Ionization distribution \mathcal{I} .

$$
\mathcal{A}_{\alpha}(x) = \exp(-\int_{l(x,x_d)} \sum_{i=1}^{n_e} \tau_{\alpha,i} \rho_i(y) \, dy) \quad \mathcal{N}_{\alpha}(x) = \frac{\rho_i(x)|_{Z_i \in \alpha}}{A_{\alpha}} \quad \mathcal{I}_{\alpha}(x) = \int_0^{\infty} \sigma_{\alpha}^{ion}(\epsilon) u_{\alpha}^{(0,0)} \, d\epsilon
$$
\n
$$
\bar{\rho}_i(x) = \tau_{i,\alpha} \int_{l(x,x_d^*)} -\mathcal{A}_{\alpha} \bar{\mathcal{A}}_{\alpha} \, dy \qquad \bar{\rho}_i(x)|_{Z_i \in \alpha} = \frac{\bar{N}_{\alpha}(x)}{A_{\alpha}} \quad \bar{u}_{\alpha}^{l,k}(x,\epsilon) = \begin{cases} \sigma_{\alpha}^{emiss}(\epsilon) \bar{I}_{\alpha}(x) & l,k = 0 \\ 0 & \text{else} \end{cases} \qquad \text{(adjoint/reverse operators)}
$$

- ^[1] Reimer L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer Series in Optical Sciences. Springer-Verlag, Berlin Heidelberg
- ^[2] Moy A. and Fournelle J. (2017). *Analytical Spatial Resolution in EPMA: What it is and How can it be Estimated?*. Microsc. Microanal. 23 S1 1098-1099
- $^{[3]}$ Bünger J. (2021). Three-dimensional modelling of x-ray emission in electron probe microanalysis based on deterministic transport equations. PhD-Thesis (RWTH Aachen University).
- [4] Hüser J., Naumann U. and Herty M. (2022) Discrete tangent and adjoint sensitivity analysis for discontinous solutions of hyperbolic conservation laws. PhD-Thesis (RWTH Aachen University).

information $\mathcal{R}(\rho(x; p))$. PDE-constrained minimization problem

$$
F_{\alpha}(u_{\alpha}, \rho) = -\partial_{\epsilon}(S[\rho]u_{\alpha}) + \sum_{d=1}^{3} A_{(d)}\partial_{x_{d}}u_{\alpha} - Q[\rho]u_{\alpha} = 0
$$

\n
$$
S[\rho]\partial_{\epsilon}\bar{F}_{\alpha} - \sum_{d=1}^{3} A_{(d)}\partial_{x_{d}}\bar{F}_{\alpha} - Q[\rho]\bar{F}_{\alpha} = \bar{u}_{\alpha} \text{ and } \bar{\rho}_{i}(x) = \int_{E} \bar{F}_{\alpha}^{T}(-\partial_{\epsilon}(S_{i}u_{\alpha}) - Q_{i}u_{\alpha}) d\epsilon \text{ (adjoint equations)}
$$

\n**Additivity approximation** for scattering-cross-sections \rightarrow material coefficients **S**, **Q** and

Algorithmic Differentiation (AD): rules for modular and efficient derivative computation

- adjoint/reverse mode AD facilitates **efficient** $O(1)$ gradient computation
- *chain rule for function composition* enables **modularity** and **encapsulation** of code

$$
\{S, Q\}[\rho] = \sum_{i=1}^{n_e} \rho_i(x) \{S, Q\}_i(\epsilon) \quad A_{(d)}^{(l,k),(l',k')} = \int_{\mathbb{S}^2} \Omega_d Y_l^k(\Omega) Y_{l'}^{k'}(\Omega) d\Omega
$$

transport matrices $A_{(d)}$ follow from CSD-scattering cross sections and the P_N -expansion

Electron beam described by energy-stable and characteristic **boundary conditions**

$$
\boldsymbol{u}_{\alpha}^{\{(l,k)\text{ odd}\}} = L_{(d)} \hat{A}_{(d)} \boldsymbol{u}_{\alpha}^{\{(l,k)\text{ even}\}} + \int_{n \cdot \Omega < 0} |v| f_{\alpha}^{\text{beam}} Y_{l}^{k} \Big|_{(l,k)\text{ odd}} d\Omega
$$
\n
$$
\bar{F}_{\alpha}^{\{(l,k)\text{ odd}\}} = -L_{(d)} \hat{A}_{(d)} \bar{F}_{\alpha}^{\{(l,k)\text{ even}\}} \qquad \text{(adjoint/reverse BC)}
$$

- k-ratio profile of $(Cu, K L_2)$ and $(Fe, K - L2)$ during L-BFGS iterations. • Black crosses: measurements considered in the objective
- k-ratio profiles almost agree quickly • Parameters: $(x, y \in \mathbb{R})$ position of ellipse, $(a, b \in \mathbb{R})$ principal axis, $(r \in \mathbb{R})$ angle
- Initial guess (left), iteration 60 (middle) and 250 (right) of the total density.

• With proper parametrization, reconstruction is possible given limited data

- Good agreement of ionization curves $\mathcal{I}_{\alpha}(x)$ computed using our method and the Monte Carlo code NeXLCore.jl.
- Both codes use the same physical parameters (stopping power/scattering cross section).
- Computed using P_{21} . 500 spatial discretization. (MC: number of electrons: 60000)
- MC results show typical statistical noise.

References

Inverse Problem of Material Reconstruction

$$
p^* = \underset{p \in \mathcal{P}}{\arg \min} \sum_{\alpha} (k^{\text{model}}[\rho(x; p), u] - k^{\exp})^2 + \mathcal{R}[\rho(x; p)]
$$

s.t. $F_{\alpha}(u_{\alpha}, \rho(x; p)) = 0 \quad \forall \alpha$

Reconstructing the infinite-dimensional $\rho(x)$ from the finite-dimensional ${k_{\alpha}}_{\alpha}$ is **ill-posed**.

We focus on the **maximum likelihood/maximum posterior estimate** under the assump-

Regularization using a certain parametrization $\rho(x;p)$ ($p \in \mathbb{R}^n$: parameters) and prior

Differentiation Framework based on AD^[4]

Fundamental Modes of AD:

tion of **gaussian noise** \rightarrow squared error.

- $tangent/forward\ mode$ derived from the $\emph{directional derivative}$

$$
\dot{y} = \lim_{h \to 0} \frac{f(x + h\dot{x}) - f(x)}{h} = \frac{\partial f}{\partial x}[\dot{x}]
$$

- adjoint/reverse mode derived from a scalar product identity

$$
\langle \bar{y}, \dot{y} \rangle = \langle \bar{y}, \frac{\partial f}{\partial x}[\dot{x}] \rangle = \langle \frac{\partial f}{\partial x}^* [\bar{y}], \dot{x} \rangle = \langle \bar{x}, \dot{x} \rangle \quad \forall \dot{x} \quad \text{(with proper definition of } \langle \cdot, \cdot \rangle\text{)}
$$

Explicit vs. Implicit AD:

Reconstruction of an Ellipsoidal Inclusion in 2D

Layer Reconstruction Using Different Parametrizations

LATEX TikZposter Comparison of a *piecewise-constant* (left), a *bilinear* (middle) and a *non-linear* (right) parametrization for the 1D reconstruction of a sharp(upper) and a diffusive (lower) material interface between an Fe -layer on **Ni-substrate (** x **is depth). Beam energies: 9, 10.5, 12, 13.5, 15** keV **.** P_9 .