MATERIAL IMAGING IN ELECTRON PROBE MICROANALYSIS

Tamme Claus^{a,*}, Silvia Richter^b and Manuel Torrilhon^a

* claus@acom.rwth-aachen.de
a RWTH Aachen University, Applied and Computational Mathematics (ACoM)
b RWTH Aachen University, Gemeinschaftslabor für Elektronenmikroskopie (GFE)

RNTHAACHEN UNIVERSIT

Electron Probe Microanalysis (EPMA)^[1]: Quantification of solid materials based on **intensity** measurements of **characteristic x-radiation** induced by focussed beams of electrons.

Inverse Problem of Material Reconstruction:

 $\rho^*(x) = \underset{\rho(x)}{\operatorname{arg\,min\,disc}} (k^{\operatorname{model}}[\rho(x)], k^{\operatorname{exp.}})$

Find the material $(\rho(\mathbf{x}): \text{ mass concentrations})$ such that a model $(k^{model}[\rho])$ reproduces the observations $(k^{exp}: k\text{-ratios}, normalized intensities})$.

Spatial Resolution^[2]: Currently limited by **k-ratio models, that assume homogeneity** inside the interaction volume. Decrease of the interaction volume by physical means: \rightarrow less depth information, \rightarrow decreased signal-to-noise ratio Employing available Monte Carlo models, that allow inhomogeneous materials: \rightarrow hindered by their statistical noise.

Our Goal: Combine k-ratios from beams with overlapping interation volumes. Use gradient based optimization to solve the minimization problem. Employ a deterministic

k-ratio Model based on P_N Approximation of BCSD^[3]

X-Ray Generation and Attenuation:

$$k_{\alpha}[\rho] = \frac{I_{\alpha}[\rho]}{I_{\alpha}[\rho_{\alpha}^{\text{std}}]} \quad \text{where} \quad I_{\alpha}[\rho] = \int_{G} \mathcal{A}_{\alpha}[\rho] \mathcal{N}_{\alpha}[\rho] \mathcal{I}_{\alpha}[\rho] \, dx$$
$$\bar{\mathcal{A}}_{\alpha} = \frac{\mathcal{N}_{\alpha}\mathcal{I}_{\alpha}\bar{k}_{\alpha}}{I_{\alpha}^{\text{std}}} \quad \bar{\mathcal{N}}_{\alpha} = \frac{\mathcal{A}_{\alpha}\mathcal{I}_{\alpha}\bar{k}_{\alpha}}{I_{\alpha}^{\text{std}}} \quad \bar{\mathcal{I}}_{\alpha} = \frac{\mathcal{A}_{\alpha}\mathcal{N}_{\alpha}\bar{k}_{\alpha}}{I_{\alpha}^{\text{std}}} \quad \text{(adjoint/reverse operators)}$$

The fields describe: Attenuation \mathcal{A} , Number of atoms \mathcal{N} , Ionization distribution \mathcal{I} .

$$\mathcal{A}_{\alpha}(x) = \exp\left(-\int_{l(x,x_{d})} \sum_{i=1}^{n_{e}} \tau_{\alpha,i}\rho_{i}(y) \,\mathrm{d}y\right) \quad \mathcal{N}_{\alpha}(x) = \frac{\rho_{i}(x)|_{Z_{i}\in\alpha}}{A_{\alpha}} \quad I_{\alpha}(x) = \int_{0}^{\infty} \sigma_{\alpha}^{\mathrm{ion}}(\epsilon)u_{\alpha}^{(0,0)} \,\mathrm{d}\epsilon$$
$$\bar{\rho}_{i}(x) = \tau_{i,\alpha} \int_{l(x,x_{d}^{*})} -\mathcal{A}_{\alpha}\bar{\mathcal{A}}_{\alpha} \,\mathrm{d}y \quad \bar{\rho}_{i}(x)|_{Z_{i}\in\alpha} = \frac{\bar{\mathcal{N}}_{\alpha}(x)}{A_{\alpha}} \quad \bar{u}_{\alpha}^{l,k}(x,\epsilon) = \begin{cases} \sigma_{\alpha}^{\mathrm{emiss}}(\epsilon)\bar{I}_{\alpha}(x) & l,k=0\\ 0 & \mathrm{else} \end{cases} \quad (\mathrm{adjoint/reverse operators})$$

Electron Transport: Evolution of $u_{\alpha}^{(l,k)} = \int_{\mathbb{S}^2} |v(\epsilon)| f_{\alpha} Y_l^k d\Omega$ is described by the **spheri**cal harmonics $(P_N: \{Y_l^k\}_{l \le N, |k| \le l})$ moment expansion of the **linear Boltzmann equation** in continuous-slowing down (BCSD) approx.

$$F_{\alpha}(u_{\alpha},\rho) = -\partial_{\epsilon}(S[\rho]u_{\alpha}) + \sum_{d=1}^{3} A_{(d)}\partial_{x_{d}}u_{\alpha} - Q[\rho]u_{\alpha} = 0$$

$$S[\rho]\partial_{\epsilon}\bar{F}_{\alpha} - \sum_{d=1}^{3} A_{(d)}\partial_{x_{d}}\bar{F}_{\alpha} - Q[\rho]\bar{F}_{\alpha} = \bar{u}_{\alpha} \quad \text{and} \quad \bar{\rho}_{i}(x) = \int_{E} \bar{F}_{\alpha}^{T}(-\partial_{\epsilon}(S_{i}u_{\alpha}) - Q_{i}u_{\alpha}) \, d\epsilon \quad \text{(adjoint equations)}$$

dditivity approximation for scattering-cross-sections \rightarrow material coefficients S ,

Additivity approximation for scattering-cross-sections \rightarrow material coefficients S, Q and transport matrices $A_{(d)}$ follow from CSD-scattering cross sections and the P_N -expansion

Inverse Problem of Material Reconstruction

Reconstructing the infinite-dimensional $\rho(x)$ from the finite-dimensional $\{k_{\alpha}\}_{\alpha}$ is **ill-posed**. We focus on the **maximum likelihood/maximum posterior estimate** under the assumption of **gaussian noise** \rightarrow squared error.

Regularization using a certain **parametrization** $\rho(x; p)$ ($p \in \mathbb{R}^n$: parameters) and **prior** information $\mathcal{R}(\rho(x; p))$.

PDE-constrained minimization problem $p^* = \underset{p \in \mathcal{P}}{\operatorname{arg\,min}} \sum_{\alpha} (k^{\operatorname{model}}[\rho(x;p), u] - k^{\exp})^2 + \mathcal{R}[\rho(x;p)]$ $s.t. F_{\alpha}(u_{\alpha}, \rho(x;p)) = 0 \quad \forall \alpha$

Differentiation Framework based on $AD^{[4]}$

Algorithmic Differentiation (AD): rules for **modular** and **efficient** derivative computation

- *adjoint/reverse mode* AD facilitates **efficient** O(1) gradient computation
- chain rule for function composition enables **modularity** and **encapsulation** of code

Fundamental Modes of AD:

- *tangent/forward mode* derived from the **directional derivative**

$$\{S,Q\}[\rho] = \sum_{i=1}^{n_e} \rho_i(x) \{S,Q\}_i(\epsilon) \quad A_{(d)}^{(l,k),(l',k')} = \int_{\mathbb{S}^2} \Omega_d Y_l^k(\Omega) Y_{l'}^{k'}(\Omega) \,\mathrm{d}\Omega$$

Electron beam described by energy-stable and characteristic **boundary conditions**

$$u_{\alpha}^{\{(l,k) \text{ odd}\}} = L_{(d)}\hat{A}_{(d)}u_{\alpha}^{\{(l,k) \text{ even}\}} + \int_{n \cdot \Omega < 0} |v| f_{\alpha}^{\text{beam}} Y_{l}^{k}|_{(l,k) \text{ odd}} d\Omega$$
$$\bar{F}_{\alpha}^{\{(l,k) \text{ odd}\}} = -L_{(d)}\hat{A}_{(d)}\bar{F}_{\alpha}^{\{(l,k) \text{ even}\}} \quad (\text{adjoint/reverse BC})$$

Structure/Sparsity of $F_{\alpha} = 0$ motivates the solving using a finite-difference staggeredgrid method (StaRMAP).

 α multiindex (beam setup, x-ray line), $\tau_{\alpha,i}$ mass attenuation coefficient, x_d detector position, x_d^* reflection of x_d about x, A_α atomic weight, $\sigma_{\alpha}^{\text{ion}}$ ionization cross section, $v(\epsilon)$ electron velocity, f_{α} electron number density, f_{α}^{beam} number density of beam electrons, S_i stopping power, Q_i transport coefficient

3D Electron Fluence in Cu and Ni

The $u_{\alpha}^{(0,0)}$ moment of $|v|f_{\alpha}$ computed using P_9 in a material consisting of Copper and Nickel. 50x50x50 spatial discreatization. Beam energy $12 \pm 0.3 keV$.

Ionization Distribution P_N vs MC (Monte Carlo)

$$\dot{y} = \lim_{h \to 0} \frac{f(x + h\dot{x}) - f(x)}{h} = \frac{\partial f}{\partial x} [\dot{x}]$$

- *adjoint/reverse mode* derived from a scalar product identity

$$\langle \bar{y}, \dot{y} \rangle = \langle \bar{y}, \frac{\partial f}{\partial x}[\dot{x}] \rangle = \langle \frac{\partial f^*}{\partial x}[\bar{y}], \dot{x} \rangle = \langle \bar{x}, \dot{x} \rangle \quad \forall \dot{x} \quad (\text{with proper definition of } \langle \cdot, \cdot \rangle)$$

Explicit vs. Implicit AD:

Primal	Tangent mode	Adjoint mode
y = f(x) $F(y, x) = 0$	$\begin{split} \dot{y} &= \frac{\partial f}{\partial x} [\dot{x}] \\ \dot{F} &= \frac{\partial F}{\partial x} [\dot{x}] \text{ and } \dot{y} = -\frac{\partial F}{\partial y} [\dot{F}] \end{split}$	$\bar{x} = \frac{\partial f}{\partial x}^* [\bar{y}]$ $\frac{\partial F}{\partial y}^* [\bar{F}] = \bar{y} \text{ and } \bar{x} = -\frac{\partial F}{\partial x}^* [\bar{F}]$

Reconstruction of an Ellipsoidal Inclusion in 2D

- k-ratio profile of (Cu, K L₂) and (Fe, K - L2) during L-BFGS iterations.
 Black crosses: measurements considered in the objective
- \bullet k-ratio profiles almost agree $\mathbf{quickly}$
- Parameters: $(x, y \in \mathbb{R})$ position of ellipse, $(a, b \in \mathbb{R})$ principal axis, $(r \in \mathbb{R})$ angle
- Initial guess (left), iteration 60 (middle) and 250 (right) of the total density.
- With proper parametrization, **reconstruction is possible** given limited data

- **Good agreement** of ionization curves $\mathcal{I}_{\alpha}(x)$ computed using our method and the Monte Carlo code NeXLCore.jl.
- Both codes use the same physical parameters (stopping power/scattering cross section).
- Computed using P_{21} . 500 spatial discretization. (MC: number of electrons: 60000)
- MC results show typical **statistical noise**.

References

- [1] Reimer L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer Series in Optical Sciences. Springer-Verlag, Berlin Heidelberg
- [2] Moy A. and Fournelle J. (2017). Analytical Spatial Resolution in EPMA: What it is and How can it be Estimated?. Microsc. Microanal. 23 S1 1098-1099
- Bünger J. (2021). Three-dimensional modelling of x-ray emission in electron probe microanalysis based on deterministic transport equations. PhD-Thesis (RWTH Aachen University).
- [4] Hüser J., Naumann U. and Herty M. (2022) Discrete tangent and adjoint sensitivity analysis for discontinous solutions of hyperbolic conservation laws. PhD-Thesis (RWTH Aachen University).

Layer Reconstruction Using Different Parametrizations

Comparison of a *piecewise-constant* (left), a *bilinear*(middle) and a *non-linear*(right) parametrization for the 1D reconstruction of a *sharp*(upper) and a *diffusive*(lower) material interface between an *Fe*-layer on *Ni*-substrate (\boldsymbol{x} is depth). Beam energies: 9, 10.5, 12, 13.5, 15keV. P₉.