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Adjoint Electron Transport in EPMA

Vision: an efficient computational model for EPMA

Current Approach:
• define a model ( ) : { } → x-ray intens. (e.g. MC or determ.)
• loop model (·) over beam positions → expensive


=

(
( ) ( ) . . .

( )
. . .

)

If the model (·) is linear (and bounded) w.r.t. the beam, then
→ Riesz Representation: there is a such that ( ) = ⟨ , ⟩{ }.
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Adjoint Electron Transport in EPMA

Riesz Representation: there is a such that ( ) = ⟨ , ⟩{ }.

Adjoint Approach:
• compute = T ( ) [→ cost comparable to ( )]
• loop ⟨ , ·⟩ over beam positions → much cheaper


=

(
⟨ , ⟩ ⟨ , ⟩ . . .

⟨ , ⟩ . . .

)

→ also useful for e.g. ’material derivatives’ in inverse modeling
→ a similar concept accelerates ’training’ in AI

[1] Halbleib & Morel (1980). Adjoint Monte Carlo electron transport in the continuous-slowing-down
approximation. Journal of Computational Physics, 34(2), 211-230.
[2] Kuridan (2023). The Adjoint Transport Equation—The Equation of Neutron Importance. In: Neutron
Transport. Graduate Texts in Physics. Springer, Cham.

70 × 70 × 198s ≈ 11days 5h
3 × 198s ≈ 10min
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