Efficient Computation of K-Ratio Profiles in EPMA Using Adjoint Electron Transport

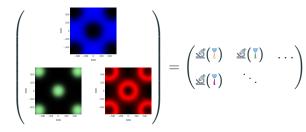
- Tamme Claus¹ claus@acom.rwth-aachen.de Gaurav Achuda². Silvia Richter². Manuel Torrilhon¹
- ¹ ACoM, Applied and Computational Mathematics, RWTH Aachen
- ² GFE, Central Facility for Electron Microscopy, RWTH Aachen

Poster Pitch, EMAS 2025 - 18th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS

Vision: an efficient computational model for EPMA

Current Approach:

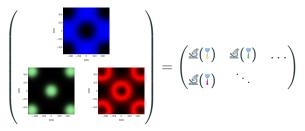
- define a model $\mathscr{A}(\overline{1}): \{\overline{1}\} \to x$ -ray intens. (e.g. MC or determ.)
- loop model $\mathscr{Q}(\cdot)$ over beam positions \rightarrow expensive



Vision: an efficient computational model for EPMA

Current Approach:

- define a model $\mathscr{A}(\overline{1}): \{\overline{1}\} \to x$ -ray intens. (e.g. MC or determ.)
- loop model $\mathscr{A}(\cdot)$ over beam positions \rightarrow expensive



If the model $\mathfrak{A}(\cdot)$ is *linear (and bounded)* w.r.t. the beam, then \rightarrow Riesz Representation: there is a \mathfrak{L} such that $\mathfrak{A}(\mathfrak{l}) = \langle \mathfrak{L}, \mathfrak{l} \rangle_{\mathfrak{l}\mathfrak{l}}$.

Adjoint Electron Transport in EPMA

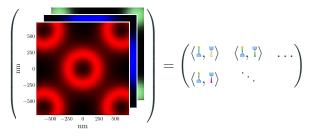
Riesz Representation: there is a \downarrow such that $\mathfrak{L}(\mathbf{\tilde{i}}) = \langle \mathbf{I}, \mathbf{\tilde{i}} \rangle_{\{\mathbf{\tilde{i}}\}}$.

Adjoint Electron Transport in EPMA

Riesz Representation: there is a \downarrow such that $\mathfrak{A}(\mathbf{\tilde{l}}) = \langle \underline{I}, \mathbf{\tilde{l}} \rangle_{\{\mathbf{\tilde{l}}\}}$.

Adjoint Approach:

- compute $\underline{!} = \underline{\mathscr{A}}^T(\blacksquare) \ [\rightarrow \text{cost comparable to } \underline{\mathscr{A}}(\underline{r})]$
- loop $\langle {\color{black} {\tt l}}, \cdot \rangle$ over beam positions \rightarrow much cheaper



 \rightarrow also useful for e.g. 'material derivatives' in inverse modeling \rightarrow a similar concept accelerates 'training' in Al

[1] Halbleib & Morel (1980). Adjoint Monte Carlo electron transport in the continuous-slowing-down approximation. Journal of Computational Physics, 34(2), 211-230.

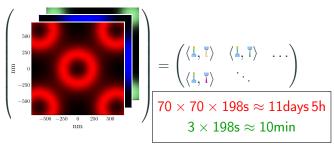
[2] Kuridan (2023). The Adjoint Transport Equation—The Equation of Neutron Importance. In: Neutron Transport. Graduate Texts in Physics. Springer, Cham.

Adjoint Electron Transport in EPMA

Riesz Representation: there is a \downarrow such that $\mathfrak{A}(\mathbf{\tilde{l}}) = \langle \underline{I}, \mathbf{\tilde{l}} \rangle_{\{\mathbf{\tilde{l}}\}}$.

Adjoint Approach:

- compute $\underline{!} = \underline{\mathscr{A}}^T(\blacksquare) \ [\rightarrow \text{cost comparable to } \underline{\mathscr{A}}(\underline{r})]$
- loop $\langle {{\!\!\!\! I}}, \cdot \rangle$ over beam positions \to much cheaper



 \rightarrow also useful for e.g. 'material derivatives' in inverse modeling

 \rightarrow a similar concept accelerates 'training' in Al

[1] Halbleib & Morel (1980). Adjoint Monte Carlo electron transport in the continuous-slowing-down approximation. Journal of Computational Physics, 34(2), 211-230.

[2] Kuridan (2023). The Adjoint Transport Equation—The Equation of Neutron Importance. In: Neutron Transport. Graduate Texts in Physics. Springer, Cham.