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Electron Probe Microanalysis(EPMA): Quantification of solid material samples based on measured intensities of characteristic x-radiation induced by focussed beams of electrons.

Vision: Efficient Computational Model for EPMA

Modeling Approach:
• given a model (·) that maps a beam
∈ { } to an x-ray intensity ( )

• loop the model (·) over all beam po-
sitions → becomes expensive


 =

(
( ) ( ) . . .
( ) . . .

)

(70× 70× 198s ≈ 11days5h)

If the model (·) is linear (and bounded) w.r.t. the beam , then
→ Riesz Representation: there is a such that ( ) = ⟨ , ⟩{ }.
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(
⟨ , ⟩ ⟨ , ⟩ . . .
⟨ , ⟩ . . .

)

(3× 198s ≈ 10min)

Adjoint Modeling Approach:

• compute representation = T ( )
[→ cost comparable to ( )]

• loop ⟨ , ·⟩{ } over all beam positions
→ much cheaper, same result

An Illustrative Example from Linear Kinetic Theory

Independent particles accelerate under constant gravity F and undergo inelastic collisions with fixed
background obstacles. Multiple sources g(i) are placed above the obstacles and a detector h below.

Non-Adjoint Model:

v∂xf
(i) + F∂vf

(i) = g(i)

BC: no inflow + inel. refl.

Y (i) =

∫
X×V

f (i)h dx dv

Adjoint Model:

− v∂xϕ− F∂vϕ = h

BC: no outflow + (inel. refl.)T

Y (i) =

∫
X×V

ϕg(i) dx dv

•we use Monte Carlo to approximate the respective integrals
• sample sources g(i) → trace trajectory → integrate h over trajectory

↕ adjoint
• sample detector h→ trace backwards→ integrate g(i) over trajectory
• application requires uncertainty quantification (variance reduction)

A Model for Electron and Photon Transport

Linear Transport Equation: describes electron and photon transport in the sample R

Ω · ∇ψ + (Σtot + Σabs)ψ =

∫
R+

∫
S2

Σψ dΩ′ dϵ′ + q

(fluence ψ(x, ϵ,Ω) = |v|f , velocity v(ϵ), density f (x, ϵ,Ω), direction Ω ∈ S2, energy ϵ ∈ R+, position x ∈ R ⊂ R3, macrosc.

diff. scat. cross-section Σ(x, ϵ, ϵ′,Ω · Ω′), total macrosc. scat. cross-section Σtot =
∫
R+

∫
S2 Σ(x, ϵ

′, ϵ,Ω′ · Ω) dΩ′ dϵ′, source q)

Beam Model: source of e−-fluence on the sample surface S
qe
−
= ψbeam ∀x ∈ S, n · Ω ≤ 0, ϵ ∈ R+ (sample surface S ⊂ ∂R, surface normal n)

X-Ray Source: source of x-ray-fluence in the sample R depends on e−-fluence

qx-ray =
1

4π

∫
R+

∫
S2

Σx-rayψe dΩ dϵ ∀x ∈ R,Ω ∈ S2 (macrosc. x-ray emission cross-section Σx-ray(ϵ))

Detector Intensity: extracts from the x-ray-fluence on the sample surface S

Y ∝
∫
S
n · Ωψp|Ω=Ωtakeoff

dΓ (detector takeoff direction Ωtakeoff)

Additivity Approximation: macrosc./microsc. cross-sections for compounds follow

Σ(x, ·) =
ne∑
e=1

Ne(x)σe(·) (# of compounds ne, particle density Ne(·), microscopic cross-section σe)

→ spatial variability of the background particle density Ne

→ electron and x-ray transport/scattering/absorption happens at different spatial scales.
→ requires coupling of efficient numerical methods for RT.

PN Moment Discretization and Numerical Solution

Approximation: spherical harmonics(Ω), finite elements(x) and energy stepping(ϵ):

ψ(x, ϵm,Ω) ≈
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(Ω)
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·
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︸ ︷︷ ︸

even parity ψ(−Ω)=ψ(Ω)

+
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︸ ︷︷ ︸

odd parity ψ(−Ω)=−ψ(Ω)

→ weak-form using a mixed variational framework based on e/o-parity splitting of ψ
→ large linear system A for Ψ = {Ψ+

m,Ψ
−
m}m=1,... per beam g(i) or per k-ratio line h(j)

→ A has tensor product structure A · Ψ =
∑

(X ⊗W) · vec(Ψ)

A · Ψ(i) = g(i); Y (ji) = h(j) · ψ(i) adjoint←−−→ AT · Φ(j) = h(j); Y (ji) = Φ(j) · g(i)

→ implementation: iterative linear solver, GPU acceleration, in

Comparison PN and Monte Carlo: Backscatter Coefficient

We compare the e− backs. coeff. of two samples with a vertical interface at 0nm

• excellent agreement between PN (EPMAfem.jl) and Monte Carlo (NeXLCore.jl)
• using identical physical parameters; Monte Carlo shows statistical noise
• non-adjoint Monte Carlo code iterates over beam positions
• adjoint PN code requires one linear solve for all beam positions

Abstract Adjoint Method in a Computational Context

Abstract concept leveraged e.g., by algorithmic differentiation (backpropagation).

•Given vectors g(i) ∈ G, i = 1, . . . I and h(j) ∈ H, j = 1, . . . J in Hilbert spaces G,H
• and A : G→ H a linear, bounded operator.

By Riesz Representation Theorem there is the equivalence

Y (ji) = ⟨h(j), A(g(i))⟩H = ⟨A∗(h(j)), g(i)⟩G,
which enables two approaches to implement the computation of the matrix Y (ji) ∈ RJ×I:

Non-Adjoint Implementation:
for i← 1 : I do

v ← A(g(i))
for j ← 1 : J do
Y (ji)← ⟨h(j), v⟩H

end for
end for

Adjoint Implementation:
for j ← 1 : J do

λ← A∗(h(j))
for i← 1 : I do
Y (ji)← ⟨λ, g(i)⟩G

end for
end for

Both approaches have different computational cost:

I × C(A(·)) + IJ × C(⟨·, ·⟩H) J × C(A∗(·)) + IJ × C(⟨·, ·⟩G)

Adjoint Electron Transport in EPMA

There are two different approaches to implement k-ratio line scans:
electron fluence ψ (∼ 1s)

• source: e−-beam
• k-ratios: integration with x-
ray emission and absorption

• a single solution ψ(i) yields all
k-ratios for single e−-beam

adjoint electron fluence ϕ (∼ 1s) • source: x-ray emission and ab-
sorption

• k-ratios: integration with the
e−-beam

• a single solution ϕ(j) yields k-
ratios(A) for all e−-beams

(426× 1s ≈ 7min 6s)

dirac beam intensity
(2× 1s ≈ 2s)

Limitations: Effective adjoint transport requires overlapping interaction volumes. Only near the beam

ψ ̸= 0 allowing for reduction of the computational domain. However, ϕ ̸= 0 eventually throughout R.

Outlook: Inverse Modeling using Numerical Optimization

Adjoint Derivatives: the computation of a Jacobian Jf ∈ Rn×m can be interpreted as

(Jf )ij = ⟨e(i),
∂f

∂x
[e(j)]⟩ = ⟨∂f

∂x

T

[e(i)], e(j)⟩

→ adjoint methods can be used for efficient implementations for:

Material Reconstruction: ρ∗(·) = argmin
ρ(·)

||Imodel[ρ(·)]− Iexp||2

→ implement gradient-based optimization based on a computational model for EPMA

The material ρ(·), measurements Imodel and Iexp (synthetic measurements, with noise) in optimization:

i = 0 i = 10 i = 30 i = 50 i = 100 i = 200

→ adjoint methods reduce the runtime of this example from multiple years (without adjoint
approaches) to 12days (adjoint gradient) to 40min (adjoint gradient & transport).
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→ code repository for reproducibility:
github.com/tam724/EPMAfem.jl


