# Adjoint Electron Transport for Computational Modeling in EPMA

<u>Tamme Claus</u><sup>a,\*</sup>, Gaurav Achuda<sup>b</sup>, Silvia Richter<sup>b</sup> and Manuel Torrilhon<sup>a</sup>

\* claus@acom.rwth-aachen.de <sup>a</sup> RWTH Aachen University, Applied and Computational Mathematics (ACoM) <sup>b</sup> RWTH Aachen University, Gemeinschaftslabor für Elektronenmikroskopie (GFE)







Electron Probe Microanalysis(EPMA): Quantification of solid material samples based on measured intensities of characteristic x-radiation induced by focussed beams of electrons.

# **Vision: Efficient Computational Model for EPMA**

Modeling Approach:

- given a model  $\mathfrak{A}(\cdot)$  that maps a beam  $\mathbf{T} \in \{\mathbf{T}\}$  to an x-ray intensity  $\mathfrak{A}(\mathbf{T})$
- loop the model  $\mathfrak{A}(\cdot)$  over all beam positions  $\rightarrow$  becomes expensive



 $(70 \times 70 \times 198s \approx 11 \text{days5h})$ 

If the model  $\mathfrak{A}(\cdot)$  is *linear (and bounded)* w.r.t. the beam  $\mathsf{T}$ , then  $\rightarrow$  Riesz Representation: there is a  $\downarrow$  such that  $\mathfrak{A}(\mathbf{T}) = \langle \downarrow, \mathbf{T} \rangle_{\{\mathbf{T}\}}$ .



#### **Adjoint Modeling Approach:**

## An Illustrative Example from Linear Kinetic Theory

Independent particles accelerate under constant gravity F and undergo inelastic collisions with fixed background obstacles. Multiple sources  $q^{(i)}$  are placed above the obstacles and a detector h below.







• we use Monte Carlo to approximate the respective integrals • sample sources  $q^{(i)} \to$  trace trajectory  $\to$  integrate h over trajectory

• loop  $\langle \downarrow, \cdot \rangle_{\{ \}}$  over all beam positions  $\rightarrow$  much cheaper, same result

• compute representation  $\mathbf{L} = \mathbf{A}^T(\mathbf{\Box})$ 



adjoint, n\_samples=20000 forward, n\_samples=50x1000

1 adjoint

• sample detector  $h \to \text{trace backwards} \to \text{integrate } g^{(i)}$  over trajectory • application requires uncertainty quantification (variance reduction)

# **A Model for Electron and Photon Transport**

**Linear Transport Equation:** describes electron and photon transport in the sample  $\mathcal{R}$ 

$$\Omega \cdot \nabla \psi + (\Sigma^{\text{tot}} + \Sigma^{\text{abs}})\psi = \int_{\mathbb{R}^+} \int_{S^2} \Sigma \psi \, \mathrm{d}\Omega' \, \mathrm{d}\epsilon' + q$$

(fluence  $\psi(x,\epsilon,\Omega) = |v|f$ , velocity  $v(\epsilon)$ , density  $f(x,\epsilon,\Omega)$ , direction  $\Omega \in S^2$ , energy  $\epsilon \in \mathbb{R}^+$ , position  $x \in \mathcal{R} \subset \mathbb{R}^3$ , macrosc. diff. scat. cross-section  $\Sigma(x, \epsilon, \epsilon', \Omega \cdot \Omega')$ , total macrosc. scat. cross-section  $\Sigma^{\text{tot}} = \int_{\mathbb{R}^+} \int_{S^2} \Sigma(x, \epsilon', \epsilon, \Omega' \cdot \Omega) \, d\Omega' \, d\epsilon'$ , source q) **Beam Model:** source of  $e^-$ -fluence on the sample surface  $\mathcal{S}$ 

(sample surface  $\mathcal{S} \subset \partial \mathcal{R}$ , surface normal n)  $q^{e^-} = \psi_{\text{beam}} \quad \forall x \in \mathcal{S}, n \cdot \Omega \le 0, \epsilon \in \mathbb{R}^+$ **X-Ray Source:** source of x-ray-fluence in the sample  $\mathcal{R}$  depends on  $e^-$ -fluence

 $q^{\text{x-ray}} = \frac{1}{4\pi} \int_{\mathbb{D}^+} \int_{\mathbb{C}^2} \Sigma^{\text{x-ray}} \psi^{\text{e}} \, \mathrm{d}\Omega \, \mathrm{d}\epsilon \quad \forall x \in \mathcal{R}, \Omega \in S^2 \quad (\text{macrosc. x-ray emission cross-section } \Sigma^{\text{x-ray}}(\epsilon))$ 

**Detector Intensity:** extracts from the x-ray-fluence on the sample surface  $\mathcal{S}$ 

$$\mathcal{Y} \propto \int_{\mathcal{S}} n \cdot \Omega \, \psi^{\mathrm{p}}|_{\Omega = \Omega_{\mathrm{takeoff}}} \, \mathrm{d}\Gamma$$

 $\Sigma(x,\cdot) = \sum \mathcal{N}_e(x)\sigma_e(\cdot)$ 

(detector takeoff direction  $\Omega_{\text{takeoff}}$ )

Additivity Approximation: macrosc./microsc. cross-sections for compounds follow

(# of compounds 
$$n_e$$
, particle density  $\mathcal{N}_e(\cdot)$ , microscopic cross-section  $\sigma_e$ )

# **Abstract Adjoint Method in a Computational Context**

Abstract concept leveraged e.g., by algorithmic differentiation (backpropagation).

- Given vectors  $g^{(i)} \in G, i = 1, ..., I$  and  $h^{(j)} \in H, j = 1, ..., J$  in Hilbert spaces G, H• and  $A: G \to H$  a linear, bounded operator.
- By *Riesz Representation Theorem* there is the equivalence  $\mathcal{Y}^{(ji)} = \langle h^{(j)}, A(q^{(i)}) \rangle_H = \langle A^*(h^{(j)}), q^{(i)} \rangle_G,$

which enables **two** approaches to implement the computation of the matrix  $\mathcal{Y}^{(ji)} \in \mathbb{R}^{J \times I}$ :

| Non-Adjoint Implementation:                                 |
|-------------------------------------------------------------|
| for $i \leftarrow 1 : I$ do                                 |
| $v \leftarrow A(g^{(i)})$                                   |
| for $j \leftarrow 1 : J$ do                                 |
| $\mathcal{Y}^{(ji)} \leftarrow \langle h^{(j)}, v  angle_H$ |
| end for                                                     |
| end for                                                     |

**Adjoint Implementation:** for  $j \leftarrow 1 : J$  do  $\lambda \leftarrow A^*(h^{(j)})$ for  $i \leftarrow 1 : I$  do  $\mathcal{Y}^{(ji)} \leftarrow \langle \lambda, g^{(i)} 
angle_G$ end for end for

Both approaches have different computational cost:

 $I \times \mathcal{C}(A(\cdot)) + IJ \times \mathcal{C}(\langle \cdot, \cdot \rangle_H)$ 

 $J \times \mathcal{C}(A^*(\cdot)) + IJ \times \mathcal{C}(\langle \cdot, \cdot \rangle_G)$ 

 $\rightarrow$  spatial variability of the background particle density  $\mathcal{N}_e$  $\rightarrow$  electron and x-ray transport/scattering/absorption happens at different **spatial scales**.  $\rightarrow$  requires **coupling** of efficient numerical methods for RT.

# $P_N$ Moment Discretization and Numerical Solution

**Approximation:** spherical harmonics( $\Omega$ ), finite elements(x) and energy stepping( $\epsilon$ ):



 $\rightarrow$  weak-form using a mixed variational framework based on e/o-parity splitting of  $\psi$  $\rightarrow$  large linear system  $\mathcal{A}$  for  $\Psi = \{\Psi_m^+, \Psi_m^-\}_{m=1,\dots}$  per beam  $g^{(i)}$  or per k-ratio line  $h^{(j)}$  $\rightarrow \mathcal{A}$  has tensor product structure  $\mathcal{A} \cdot \Psi = \sum (\mathcal{X} \otimes \mathcal{W}) \cdot \operatorname{vec}(\Psi)$ 

$$\mathcal{A} \cdot \Psi^{(i)} = g^{(i)}; \ \mathcal{Y}^{(ji)} = h^{(j)} \cdot \psi^{(i)} \qquad \xleftarrow{\text{adjoint}} \qquad \mathcal{A}^T \cdot \Phi^{(j)} = h^{(j)}; \ \mathcal{Y}^{(ji)} = \Phi^{(j)} \cdot g^{(i)}$$

 $\rightarrow$  implementation: iterative linear solver, GPU acceleration, in **julia** 

**Comparison**  $P_N$  and Monte Carlo: Backscatter Coefficient

### **Adjoint Electron Transport in EPMA**

There are **two** different approaches to implement k-ratio line scans:





**Limitations:** Effective adjoint transport requires **overlapping interaction volumes**. Only near the beam  $\psi \neq 0$  allowing for reduction of the computational domain. However,  $\phi \neq 0$  eventually throughout  $\mathcal{R}$ .

## **Outlook:** Inverse Modeling using Numerical Optimization

**Adjoint Derivatives:** the computation of a Jacobian  $Jf \in \mathbb{R}^{n \times m}$  can be interpreted as

$$(Jf)_{ij} = \langle e^{(i)}, \frac{\partial f}{\partial x}[e^{(j)}] \rangle = \langle \frac{\partial f}{\partial x}^T[e^{(i)}], e^{(j)} \rangle$$

 $\rightarrow$  adjoint methods can be used for efficient implementations for:



• excellent agreement between  $P_N$  (EPMAfem.jl) and Monte Carlo (NeXLCore.jl) • using identical physical parameters; Monte Carlo shows **statistical noise** • non-adjoint Monte Carlo code *iterates over beam positions* 

• adjoint  $P_N$  code requires one linear solve for all beam positions

 $\rho^*(\cdot) = \arg\min||I^{\text{model}}[\rho(\cdot)] - I^{\exp}||^2$ Material Reconstruction:  $\rightarrow$  implement gradient-based optimization based on a computational model for EPMA

The material  $\rho(\cdot)$ , measurements  $I^{\text{model}}$  and  $I^{\text{exp}}$  (synthetic measurements, with noise) in optimization:



 $\rightarrow$  adjoint methods reduce the runtime of this example from multiple years (without adjoint) approaches) to 12days (adjoint gradient) to 40min (adjoint gradient & transport).

#### References

[1] Halbleib, J. A., & Morel, J. E. (1980). Adjoint Monte Carlo electron transport in the continuous-slowing-down approximation. In Journal of Computational Physics (Vol. 34, Issue 2, pp. 211–230). Elsevier BV. <sup>[2]</sup> Egger, H., & Schlottborn, M. (2012). A Mixed Variational Framework for the Radiative Transfer Equation. In Mathematical Models and Methods in Applied Sciences (Vol. 22, Issue 03). World Scientific Pub Co Pte Ltd. <sup>[3]</sup> Griewank, A., & Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. In Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics. <sup>[4]</sup> Claus, T., & Torrilhon, M. (2025). Twofold Adjoint Method for Inverse Problems with Excitation-Dominant Models. (unpublished, submitted to Inverse Problems)

 $\rightarrow$  code repository for reproducibility: github.com/tam724/EPMAfem.jl

