ADJOINT ELECTRON TRANSPORT FOR COMPUTATIONAL MODELING IN EPMA
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Electron Probe Microanalysis(EPMA): Quantification of solid material samples based on measured intensities of characteristic x-radiation induced by focussed beams of electrons.

An Illustrative Example from Linear Kinetic Theory

Vision: Efficient Computational Model for EPMA

Modeling Approach:
e given a model «(-) that maps a beam

Independent particles accelerate under constant gravity F' and undergo inelastic collisions with fixed
backeround obstacles. Multiple sources g'?) are placed above the obstacles and a detector h below.
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A Model for Electron and Photon Transport

Abstract Adjoint Method in a Computational Context

Linear Transport Equation: describes electron and photon transport in the sample R
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(Aluence ¥ (z, €,Q) = |v|f, velocity v(e€), density f(x,e, ), direction Q € S?, energy € € RT, position x € R C R?, macrosc.

diff. scat. cross-section X(z, €, €, - '), total macrosc. scat. cross-section X' = [, [ X(z, €, €, Q- Q) dQ d€, source q)

Beam Model: source of e -fluence on the sample surface &
¢ = Yheam VZES,n-N0<0,ecR”

X-Ray Source: source of x-ray-fluence in the sample R depends on e -fluence

(sample surface S C IR, surface normal n)
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Detector Intensity: extracts from the x-ray-fluence on the sample surface S

y X / " Q wp’Q:Qtakeoff dr
S

(detector takeoff direction Qakeofr)

Additivity Approximation: macrosc./microsc. cross-sections for compounds follow

S(r,) = S Nz

(# of compounds n,, particle density N.(+), microscopic cross-section o)

— spatial variability of the background particle density N.
— electron and x-ray transport /scattering/absorption happens at different spatial scales.
— requires coupling of efficient numerical methods for RT'.

Pnr Moment Discretization and Numerical Solution

Approximation: spherical harmonics(€2), finite elements(x) and energy stepping(e):
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even parity ¥ (—Q)=1(Q) odd parity ¥ (—§2)=—1(2)
— weak-form using a mixed variational framework based on e/o-parity splitting of ¢
— large linear system A for W = {W ' W1,  per beam g') or per k-ratio line AU
— A has tensor product structure A - V¥ = > (X @ W) - vec(V¥)
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— Implementation: iterative linear solver, GPU acceleration, in julia

Comparison Py and Monte Carlo: Backscatter Coeflicient

We compare the e™ backs. coeff. of two samples with a vertical interface at Onm
electron backscatter yield W /Ti

electron backscatter yield Ni/Fe
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e excellent agreement between Py (EPMAfem.jl) and Monte Carlo (NeXLCore.jl)
e using identical physical parameters; Monte Carlo shows statistical noise

e non-adjoint Monte Carlo code iterates over beam positions

e adjoint Py code requires one linear solve for all beam positions
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Abstract concept leveraged e.g., by algorithmic differentiation (backpropagation).

o Given vectors ¢! € G,i=1,... T and hY) € H,j = 1,...J in Hilbert spaces G, H
eand A : G — H a linear, bounded operator.

By Riesz Representation Theorem there is the equivalence
YU = (h9), A(g) g = (A (B, ).
which enables two approaches to implement the computation of the matrix YU € R7*/:

Non-Adjoint Implementation:
for < 1:1 do
v+ A(g")
for < 1:J do
y(]z) — <h(])7 U>H
end for
end for

Adjoint Implementation:
for j < 1:J do
A — A*(hU)
for : < 1:17 do
YUt) ¢ <)\,9(i)>a
end for
end for

Both approaches have different computational cost:

I xCA(W)+1J xC((-,)n) J x C(A™(+)) + IJ x C({,")a)

Adjoint Electron Transport in EPMA

There are two different approaches to implement k-ratio line scans:

electron fluence ¥ (- 1)

e source: e -beam

e k-ratios: integration with x-
ray emission and absorption

e a single solution " yields all
k-ratios for single e -beam
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Limitations: Effective adjoint transport requires overlapping interaction volumes. Only near the beam

(2 x 1s ~ 2s)
dirac beam intensity
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e k-ratios: integration with the
e -beam

e a single solution ¢V yields k-
ratios(A) for all e”-beams
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1 # 0 allowing for reduction of the computational domain. However, ¢ # 0 eventually throughout R.

Outlook: Inverse Modeling using Numerical Optimization

Adjoint Derivatives: the computation of a Jacobian Jf € R" " can be interpreted as

T
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— adjoint methods can be used for eflicient implementations for:
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p*(+) = arg min
pi)

— Implement gradient-based optimization based on a computational model for EPMA

Material Reconstruction:

The material p(-), measurements ™04l and 1P (synthetic measurements, with noise) in optimization:

— adjoint methods reduce the runtime of this example from multiple years (without adjoint
approaches) to 12days (adjoint gradient) to 40min (adjoint gradient & transport).

— code repository for reproducibility: Q,l?{ﬁ
github.com/tam724 /EPMAfem jl %&9




