Aufgabe 1. Vorgelegt sei das Funktional $F: D \to \mathbb{R}$ mit

$$F(y) = \int_{-1}^{1} y(x) \log(y(x)) dx$$

und $D=\{w\in C^2[-1,1]:w(x)\geq \frac{1}{2e}\}$. Dabei bezeichnet log den natürlichen Logarithmus.

- a) Ist D konvex? Ist F konvex?
- b) Geben sie eine Differentialgleichung an, der die Extremale des Funktionals *F* genügen. Bestimmen Sie einen Kandidatien für ein Extremum. Liegt ein globales Extremum vor?

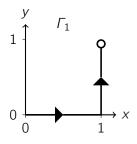
2 + 3 Punkte

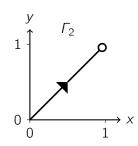
Name:	MatrNr.:	3

Aufgabe 2. Gegeben sei das Vektorfeld $f: \mathbb{R}^2 \to \mathbb{R}^2$,

$$f(x,y) = \begin{pmatrix} xe^y \\ \sin(x) + y \end{pmatrix}$$

sowie die beiden Wege Γ_1 und Γ_2 von (0,0) nach (1,1):





a) Bestimmen Sie die Arbeitsintegrale

$$\int_{\Gamma_1} f \cdot dx \quad \text{und} \quad \int_{\Gamma_2} f \cdot dx \ .$$

b) Besitzt f ein Potential?

3 + 1 Punkte

Name:	MatrNr.:	5
-------	----------	---

Name: _____

Matr.-Nr.: _____

6

Aufgabe 3. Gegeben sei $\Omega =]0, 1[$ sowie die Funktionen

$$f: \Omega \to \mathbb{R}, \quad f(x) = \frac{1}{\sqrt{x}}$$

 $g: \Omega \to \mathbb{R}, \quad g(x) = \exp(-x).$

- a) Ist g Lebesgue-messbar? Ist g Lebesgue-integrierbar?
- b) Geben Sie eine Funktion h an mit $f \neq h$ und $h \sim f$ bzgl. der Äquivalenzrelation

$$u \sim v \Leftrightarrow u = v$$
 fast überall auf Ω .

- c) Zeigen Sie dass
 - (i) $f \in L^p(\Omega)$ für $1 \le p < 2$,
 - (ii) $g \in L^q(\Omega)$ für $1 \le p \le \infty$.
- d) Folgern Sie aus c) dass $f \cdot g \in L^1(\Omega)$.

2 + 1 + 2 + 1 Punkte

Name:	MatrNr.: 7

Name: ______ Matr.-Nr.: _____ 8

Aufgabe 4. Gegeben sei das Vektorfeld $f: \mathbb{R}^2 \to \mathbb{R}^3$ mit

$$f(x,y) = \begin{pmatrix} x^2 \\ xz^2 \\ y^2 \end{pmatrix}$$

sowie der Einheitswürfel

$$V = \{(x, y, z) \in \mathbb{R}^3 | 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}.$$

Berechnen Sie das Oberflächenintegral (zweiter Art)

$$\int\limits_{\partial V} \langle f, \nu \rangle \, d\sigma \ ,$$

wobei ∂V den Rand von V bezeichnet und ν das von V nach aussen zeigende Einheitsnormalenfeld.

3 Punkte

Name:	MatrNr.:	9

Name:	MatrNr.:	10

Aufgabe 5. Gegeben sei das Runge-Kutta-Verfahren

$$k_1 = f(t, x),$$

 $k_2 = f(t + ah, x + ahk_1),$
 $\hat{\psi}(t, x; h) = x + h(b_1k_1 + b_2k_2)$

mit $a, b_1, b_2 \in \mathbb{R}$.

- a) Geben Sie das Runge-Kutta-Tableau für dieses Verfahren an. Ist das Verfahren explizit oder implizit?
- b) Leiten Sie Bedingungen für die Koeffizienten $a, b_1, b_2 \in \mathbb{R}$ her, damit das Verfahren die Ordnung 2 besitzt.

Hinweis: Die Funktion f sei dazu genügend oft differenzierbar.

1,5+2,5 Punkte

Name:	MatrNr.:	11
ivallic	WatiIVI	1

Aufgabe 6. Zu lösen sei das Anfangswertproblem

$$x' = \begin{pmatrix} -1 & 2 \\ 0 & -2 \end{pmatrix} x,$$

$$x(t_0) = x_0,$$

wobei $x \in C^1([t_1,t_2],\mathbb{R}^2)$, $t_0 \in [t_1,t_2]$, mithilfe des Heunschen Verfahrens, welches durch das Runge-Kutta-Tableau

gegeben ist.

- a) Leiten Sie das Stabilitätsgebiet des Heunschen Verfahrens im Allgemeinen und für obiges Anfangswertproblem im Speziellen her.
 Hinweis: Entkoppeln Sie für den zweiten Teil der Aufgabe zunächst die Differentialgleichungen.
- b) Für welche Schrittweiten *h* ist das Heunsche Verfahren für obiges Anfangswertproblem stabil?

3 + 1 Punkte

Name:	MatrNr.:	13
Name:	MatrINT.:	13

Name:	MatrNr.:	14
- Tallici		

Aufgabe 7. Gegeben sei die Matrix

$$A = \begin{pmatrix} 6 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 3 \end{pmatrix}.$$

- a) Geben Sie unter Verwendung des Satzes von Gerschgorin Abschätzungen für die Eigenwerte von A an.
- b) Führen Sie zwei Schritte der klassischen Vektoriteration mit dem Startvektor $x^{(0)} = (1,0,0)^T$ durch und geben Sie eine Näherung für den betragsgrössten Eigenwert von A an.

2 + 2 Punkte

Name:	MatrNr.:	15
-------	----------	----

Name: _____ Matr.-Nr.: ____

Aufgabe 8. Benutzen Sie das QR-Verfahren mit Shift zur Berechnung der Eigenwerte der Matrix $A \in \mathbb{R}^{2 \times 2}$ gegeben durch

$$A = \begin{pmatrix} 2 & \epsilon \\ \epsilon & 1 \end{pmatrix}.$$

a) Berechnen sie die QR-Zerlegung von $A - \sigma_1 I := QR$ für beliebiges σ_1 .

Führen Sie nun einen QR-Schritt mit Shift σ_1 durch, d.h. stellen sie die QR-Zerlegung der Matrix $A-\sigma_1I:=QR$ auf und berechnen Sie die Transformierte mit Rück-Shift $A_1:=RQ+\sigma_1I$ für

- b) $\sigma_1 = 0$, d.h. ohne Shift,
- c) $\sigma_1 = 1$, d.h. mit Shift.
- d) Wie ändert sich die Konvergenz der Nicht- bzw. Nebendiagonalelemente im Vergleich A_1 für $\sigma_1=0$ zu A_1 für $\sigma_1=1$ unter der Voraussetzung $\epsilon\ll 1$?

Hinweis: Gehen Sie bei Q von der orthogonalen Rotationsmatrix $Q = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ aus und ermitteln Sie den Rotationswinkel φ durch die Forderung $R_{21} = 0$ (R ist obere Dreiecksmatrix!). Lösen Sie dazu zunächst die Gleichung $A - \sigma_1 I = QR$ nach R auf: $R = Q^T(A - \sigma_1 I)$.

Hinweis: Es gilt $sin(arctan(x)) = \frac{x}{\sqrt{x^2+1}}$ sowie $cos(arctan(x)) = \frac{1}{\sqrt{x^2+1}}$.

3 + 1 + 1 + 1 Punkte

16

Name:	MatrNr.:	17
italiici		_ ,

Name:	MatrNr.:	18

Name:	MatrNr.:	19

Name:	MatrNr.:	20

Name:	MatrNr.:	21
Ivallic.	1VIACI 1VI	~ 1

Name:	MatrNr.:	22

Name: MatrNr.: 23	Name:	MatrNr.:	23
-------------------	-------	----------	----